
COMPLIANT

HALOGEN FREE



# **E Series Power MOSFET**

| PRODUCT SUMMARY                            |                         |      |  |  |
|--------------------------------------------|-------------------------|------|--|--|
| V <sub>DS</sub> (V) at T <sub>J</sub> max. | 700                     |      |  |  |
| R <sub>DS(on)</sub> max. at 25 °C (Ω)      | $V_{GS} = 10 \text{ V}$ | 0.28 |  |  |
| Q <sub>g</sub> max. (nC)                   | 96                      |      |  |  |
| Q <sub>gs</sub> (nC)                       | 11                      |      |  |  |
| Q <sub>gd</sub> (nC)                       | 21                      |      |  |  |
| Configuration                              | Single                  |      |  |  |



#### **FEATURES**

- Low figure-of-merit (FOM) Ron x Qa
- Low input capacitance (C<sub>iss</sub>)
- · Reduced switching and conduction losses
- Ultra low gate charge (Q<sub>q</sub>)
- Avalanche energy rated (UIS)
- Material categorization: for definitions of compliance please see <a href="https://www.vishay.com/doc?99912">www.vishay.com/doc?99912</a>

#### **APPLICATIONS**

- Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
  - High-intensity discharge (HID)
  - Fluorescent ballast lighting
- Industrial
  - Welding
  - Induction heating
  - Motor drives
  - Battery chargers
  - Renewable energy
  - Solar (PV inverters)

| ORDERING INFORMATION            |                             |  |  |
|---------------------------------|-----------------------------|--|--|
| Package                         | D <sup>2</sup> PAK (TO-263) |  |  |
| Lead (Pb)-free and Halogen-free | SiHB15N65E-GE3              |  |  |

| PARAMETER                                               |                         |                                                   | SYMBOL                            | LIMIT       | UNIT   |  |
|---------------------------------------------------------|-------------------------|---------------------------------------------------|-----------------------------------|-------------|--------|--|
| Drain-Source Voltage                                    |                         |                                                   | V <sub>DS</sub>                   | 650         | V      |  |
| Gate-Source Voltage                                     |                         |                                                   | $V_{GS}$                          | ± 30        | v      |  |
| Continuous Drain Current (T <sub>.I</sub> = 150 °C)     | V <sub>GS</sub> at 10 V | T <sub>C</sub> = 25 °C<br>T <sub>C</sub> = 100 °C | 1                                 | 15          |        |  |
| Continuous Drain Current (1 <sub>J</sub> = 150 °C)      |                         | T <sub>C</sub> = 100 °C                           | I <sub>D</sub>                    | 10          | Α      |  |
| Pulsed Drain Current <sup>a</sup>                       |                         |                                                   | I <sub>DM</sub>                   | 38          |        |  |
| Linear Derating Factor                                  |                         |                                                   |                                   | 1.4         | W/°C   |  |
| Single Pulse Avalanche Energy b                         |                         |                                                   | E <sub>AS</sub>                   | 286         | mJ     |  |
| Maximum Power Dissipation                               |                         |                                                   | $P_{D}$                           | 34          | W      |  |
| Operating Junction and Storage Temperature Range        |                         |                                                   | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150 | °C     |  |
| Drain-Source Voltage Slope $T_J = 125 ^{\circ}\text{C}$ |                         |                                                   | -15.47-11                         | 37          | 1//    |  |
| Reverse Diode dV/dt <sup>d</sup>                        |                         |                                                   | dV/dt –                           | 23          | - V/ns |  |
| Soldering Recommendations (Peak Temperature) c for 10 s |                         |                                                   |                                   | 300         | °C     |  |

#### **Notes**

- a. Repetitive rating; pulse width limited by maximum junction temperature.
- b.  $V_{DD} = 50 \text{ V}$ , starting  $T_J = 25 \,^{\circ}\text{C}$ ,  $L = 28.2 \,^{\circ}\text{mH}$ ,  $R_q = 25 \,^{\circ}\Omega$ ,  $I_{AS} = 4.5 \,^{\circ}\text{A}$ .
- c. 1.6 mm from case.
- d.  $I_{SD} \le I_D$ , dl/dt = 100 A/ $\mu$ s, starting  $T_J = 25$  °C.

| THERMAL RESISTANCE RATINGS       |                   |   |     |      |  |  |
|----------------------------------|-------------------|---|-----|------|--|--|
| PARAMETER SYMBOL TYP. MAX. UNIT  |                   |   |     |      |  |  |
| Maximum Junction-to-Ambient      | R <sub>thJA</sub> | - | 62  | °C/W |  |  |
| Maximum Junction-to-Case (Drain) | R <sub>thJC</sub> | - | 0.7 | C/VV |  |  |

# Vishay Siliconix

| No.   Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>SPECIFICATIONS</b> ( $T_J = 25  ^{\circ}\text{C}$ , u | nless otherwi         | ise noted)                                                          |                                                                |      |      |       |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------|---------------------------------------------------------------------|----------------------------------------------------------------|------|------|-------|-------|
| Drain-Source Breakdown Voltage   VDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PARAMETER                                                | SYMBOL                | TEST CONDITIONS                                                     |                                                                | MIN. | TYP. | MAX.  | UNIT  |
| Vos Temperature Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Static                                                   |                       |                                                                     |                                                                |      |      |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drain-Source Breakdown Voltage                           | V <sub>DS</sub>       | V <sub>GS</sub> :                                                   | = 0 V, I <sub>D</sub> = 250 μA                                 | 650  | -    | -     | V     |
| Cate-Source Leakage   IGSS   VGS = ± 20 V   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>DS</sub> Temperature Coefficient                  | $\Delta V_{DS}/T_{J}$ | Referenc                                                            | e to 25 °C, I <sub>D</sub> = 1 mA                              | -    | 0.75 | -     | V/°C  |
| Cate-Source Leakage   IGSS   VGS = ± 20 V   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gate-Source Threshold Voltage (N)                        | V <sub>GS(th)</sub>   | V <sub>DS</sub> =                                                   | = V <sub>GS</sub> , I <sub>D</sub> = 250 μA                    | 2    | -    | 4     | V     |
| Vos = 30 V   Vos = 30 V   Vos = 30 V   Vos = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | . ,                   | V <sub>GS</sub> = ± 20 V                                            |                                                                | -    | -    | ± 100 | nA    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gate-Source Leakage                                      | I <sub>GSS</sub>      |                                                                     | V <sub>GS</sub> = ± 30 V                                       | -    | -    | ± 1   | μΑ    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                       | V <sub>DS</sub> =                                                   | = 650 V, V <sub>GS</sub> = 0 V                                 | -    | -    | 1     |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zero Gate Voltage Drain Current                          | I <sub>DSS</sub>      |                                                                     |                                                                | -    | -    | 10    | μA    |
| Forward Transconductance   gfs   V_DS = 30 V, I_D = 8 A   -   5.6   -   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drain-Source On-State Resistance                         | R <sub>DS(on)</sub>   |                                                                     |                                                                | -    | 0.23 | 0.28  | Ω     |
| $ \begin{array}{ c c c c c c } \hline \mbox{lnput Capacitance} & C_{iss} & V_{GS} = 0 \ V, \\ \hline \mbox{Output Capacitance} & C_{oss} & V_{DS} = 100 \ V, \\ \hline \mbox{Reverse Transfer Capacitance} & C_{rss} & V_{DS} = 100 \ V, \\ \hline \mbox{Reverse Transfer Capacitance, Energy} & C_{o(er)} & V_{DS} = 0 \ V \ to 520 \ V, V_{GS} = 0 \ V \\ \hline \mbox{Effective Output Capacitance, Energy} & C_{o(er)} & V_{DS} = 0 \ V \ to 520 \ V, V_{GS} = 0 \ V \\ \hline \mbox{Effective Output Capacitance, Time} & C_{o(tr)} & V_{DS} = 10 \ V \\ \hline \mbox{Effective Output Capacitance, Time} & Q_g & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Forward Transconductance                                 |                       | V <sub>DS</sub>                                                     | s = 30 V, I <sub>D</sub> = 8 A                                 | -    | 5.6  | -     | S     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dynamic                                                  |                       |                                                                     |                                                                |      |      |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Input Capacitance                                        | C <sub>iss</sub>      |                                                                     | Voc = 0 V                                                      | -    | 1640 | -     |       |
| Feverse Translet Capacitance $C_{rss}$ $C_{co(er)}$ $C_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Output Capacitance                                       |                       | 1                                                                   |                                                                | -    | 80   | -     | 1     |
| Felated a   Co(er)   Pos = 0 V to 520 V, V <sub>GS</sub> = 0 V   Co(er)   Pos = 0 V to 520 V, V <sub>GS</sub> = 0 V   Co(er)   Pos = 0 V to 520 V, V <sub>GS</sub> = 0 V   Co(er)   Co(er)   Pos = 0 V to 520 V, V <sub>GS</sub> = 0 V   Co(er)   Co(er                                                                                                                                                                                                                                                                                                                                                                                                                           | Reverse Transfer Capacitance                             | C <sub>rss</sub>      |                                                                     |                                                                | -    | 4    | -     | pF    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | C <sub>o(er)</sub>    | V 0V 500V V 0V                                                      |                                                                | -    | 63   | -     |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | C <sub>o(tr)</sub>    | $V_{DS} = 0$                                                        | $V_{DS} = 0 \text{ V to } 520 \text{ V}, V_{GS} = 0 \text{ V}$ |      | 213  | -     |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Gate Charge                                        | Qg                    |                                                                     |                                                                | -    | 48   | 96    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gate-Source Charge                                       | Q <sub>gs</sub>       | $V_{GS} = 10 \text{ V}$                                             | $I_D = 8 A, V_{DS} = 520 V$                                    | -    | 11   | -     | nC    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gate-Drain Charge                                        | $Q_{gd}$              |                                                                     |                                                                | -    | 21   | -     |       |
| Turn-Off Delay Time $t_{d(off)} = 8 \text{ A}, \\ V_{GS} = 10 \text{ V}, R_g = 9.1 \Omega$ $- 48 96$ $- 25 50$ Gate Input Resistance $R_g = 10 \text{ M}, R_g = 9.1 \Omega$ $- 0.8 - \Omega$ Drain-Source Body Diode Characteristics  Continuous Source-Drain Diode Current $R_S = 10 \text{ M}, R_S = 10 \text{ V}, R_S = 9.1 \Omega$ $- 0.8 - \Omega$ $- 0.8 - \Omega$ $- 0.8 - \Omega$ $- 0.8 - \Omega$ MOSFET symbol showing the integral reverse p - n junction diode $ 38$ $ 38$ Pulsed Diode Forward Voltage $R_S = 10 \text{ V}, R_S = 10  V$ | Turn-On Delay Time                                       | t <sub>d(on)</sub>    |                                                                     |                                                                | -    | 18   | 36    |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rise Time                                                | t <sub>r</sub>        | Vpp                                                                 | = 520 V. In = 8 A.                                             | -    | 24   | 48    | ne    |
| Gate Input Resistance       Rg       f = 1 MHz, open drain       -       0.8       -       Ω         Drain-Source Body Diode Characteristics         Continuous Source-Drain Diode Current       Is       MOSFET symbol showing the integral reverse p - n junction diode       -       -       -       15       -       -       38         Pulsed Diode Forward Current       IsM       p - n junction diode       -       -       38       -       -       -       38         Diode Forward Voltage       VsD       T <sub>J</sub> = 25 °C, I <sub>S</sub> = 8 A, V <sub>GS</sub> = 0 V       -       -       -       1.2       V         Reverse Recovery Time       t <sub>rr</sub> T <sub>J</sub> = 25 °C, I <sub>F</sub> = I <sub>S</sub> = 8 A, dI/dt = 100 A/μs, V <sub>R</sub> = 400 V       -       4.6       -       μC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Turn-Off Delay Time                                      | t <sub>d(off)</sub>   | V <sub>GS</sub> :                                                   | = 10 V, $R_g = 9.1 \Omega$                                     | -    | 48   | 96    | T ris |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fall Time                                                | t <sub>f</sub>        | <u> </u>                                                            |                                                                | -    | 25   | 50    |       |
| Continuous Source-Drain Diode Current $I_S$ MOSFET symbol showing the integral reverse $p-n$ junction diode $I_{SM}$ Diode Forward Voltage $V_{SD}$ $I_{J}=25^{\circ}C$ , $I_{S}=8A$ , $V_{GS}=0V$ Reverse Recovery Time $I_{T_{J}}=25^{\circ}C$ , $I_{F}=I_{S}=8A$ , $I_{T_{J}}=25^{\circ}C$ ,                                                                                                                               | Gate Input Resistance                                    | $R_g$                 | f = 1 MHz, open drain                                               |                                                                | -    | 0.8  | -     | Ω     |
| Pulsed Diode Forward Current    S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drain-Source Body Diode Characteristic                   | es                    |                                                                     |                                                                |      |      |       |       |
| Pulsed Diode Forward Current $I_{SM}$ $p$ - $n$ junction diode $p$ - $p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Continuous Source-Drain Diode Current                    | Is                    | showing the integral reverse                                        |                                                                | -    | -    | 15    | _     |
| Reverse Recovery Time $t_{rr}$ $T_J = 25  ^{\circ}\text{C},  I_F = I_S = 8  \text{A},  dl/dt = 100  \text{A/µs},  V_R = 400  \text{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pulsed Diode Forward Current                             | I <sub>SM</sub>       |                                                                     |                                                                | -    | -    | 38    |       |
| Reverse Recovery Charge $Q_{rr}$ $T_J = 25$ °C, $I_F = I_S = 8$ A, $dI/dt = 100$ A/ $\mu$ s, $V_R = 400$ V $-4.6$ $-\mu$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Diode Forward Voltage                                    | V <sub>SD</sub>       | T <sub>J</sub> = 25 °C, I <sub>S</sub> = 8 A, V <sub>GS</sub> = 0 V |                                                                | -    | -    | 1.2   | V     |
| Reverse Recovery Charge $Q_{rr}$ $dI/dt = 100 \text{ A/µs}, V_R = 400 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reverse Recovery Time                                    | t <sub>rr</sub>       | $T_J = 25 ^{\circ}\text{C}, I_F = I_S = 8 \text{A},$                |                                                                | -    | 325  | -     | ns    |
| u/ut = 100 A/µs, V <sub>R</sub> = 400 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reverse Recovery Charge                                  | Q <sub>rr</sub>       |                                                                     |                                                                | -    | 4.6  | -     | μC    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reverse Recovery Current                                 | I <sub>RRM</sub>      |                                                                     |                                                                | -    | 20   | -     | A     |

#### Notes

a.  $C_{oss(er)}$  is a fixed capacitance that gives the same energy as  $C_{oss}$  while  $V_{DS}$  is rising from 0 % to 80 %  $V_{DSS}$ .

b.  $C_{oss(tr)}$  is a fixed capacitance that gives the same charging time as  $C_{oss}$  while  $V_{DS}$  is rising from 0 % to 80 %  $V_{DSS}$ .



### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

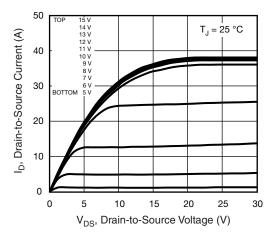



Fig. 1 - Typical Output Characteristics

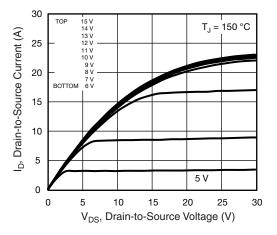



Fig. 2 - Typical Output Characteristics

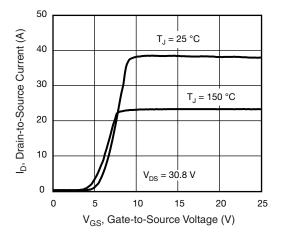



Fig. 3 - Typical Transfer Characteristics

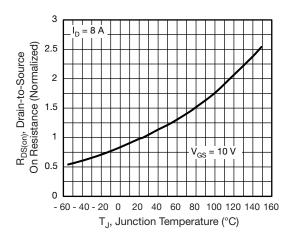



Fig. 4 - Normalized On-Resistance vs. Temperature

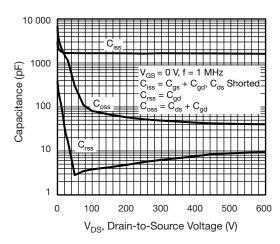



Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

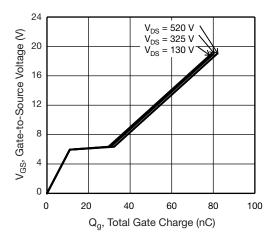



Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage



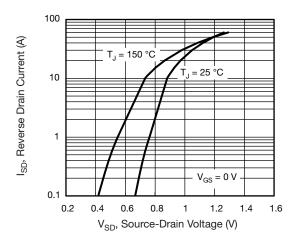



Fig. 7 - Typical Source-Drain Diode Forward Voltage

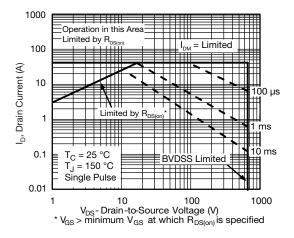



Fig. 8 - Maximum Safe Operating Area

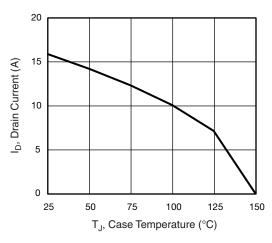



Fig. 9 - Maximum Drain Current vs. Case Temperature

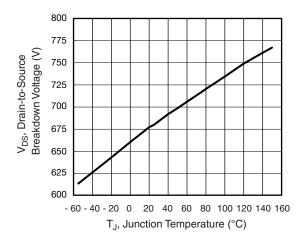



Fig. 10 - Temperature vs. Drain-to-Source Voltage

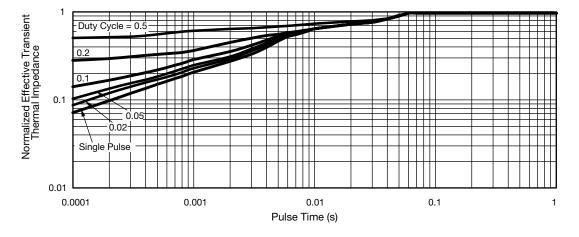



Fig. 11 - Normalized Thermal Transient Impedance, Junction-to-Case

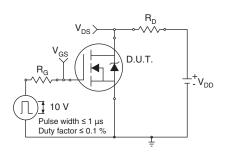



Fig. 12 - Switching Time Test Circuit



Fig. 13 - Switching Time Waveforms

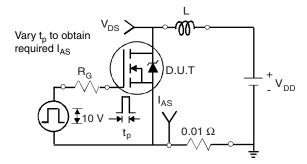



Fig. 14 - Unclamped Inductive Test Circuit

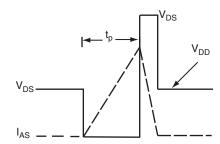



Fig. 15 - Unclamped Inductive Waveforms

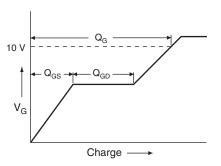



Fig. 16 - Basic Gate Charge Waveform

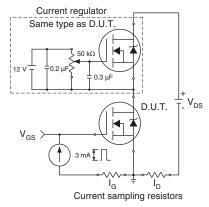
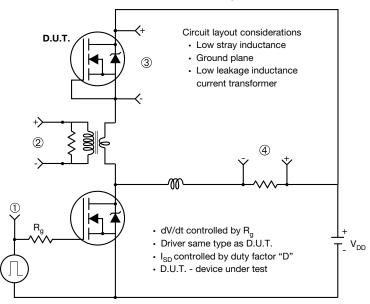
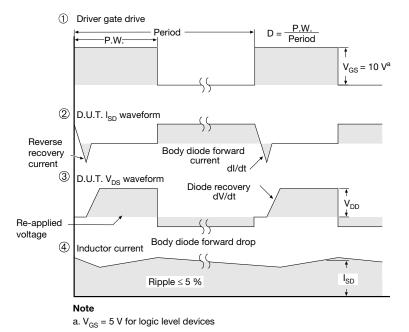



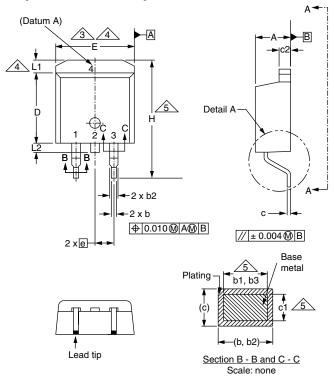

Fig. 17 - Gate Charge Test Circuit

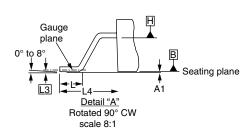


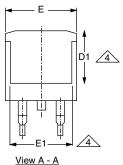
#### Peak Diode Recovery dV/dt Test Circuit







Fig. 18 - For N-Channel


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <a href="https://www.vishay.com/ppg?91536">www.vishay.com/ppg?91536</a>.






### **TO-263AB (HIGH VOLTAGE)**







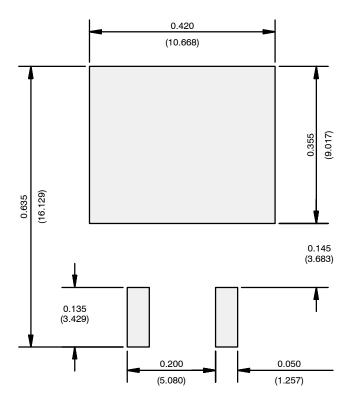
|      | MILLIN | METERS | INC   | HES   |
|------|--------|--------|-------|-------|
| DIM. | MIN.   | MAX.   | MIN.  | MAX.  |
| Α    | 4.06   | 4.83   | 0.160 | 0.190 |
| A1   | 0.00   | 0.25   | 0.000 | 0.010 |
| b    | 0.51   | 0.99   | 0.020 | 0.039 |
| b1   | 0.51   | 0.89   | 0.020 | 0.035 |
| b2   | 1.14   | 1.78   | 0.045 | 0.070 |
| b3   | 1.14   | 1.73   | 0.045 | 0.068 |
| С    | 0.38   | 0.74   | 0.015 | 0.029 |
| c1   | 0.38   | 0.58   | 0.015 | 0.023 |
| c2   | 1.14   | 1.65   | 0.045 | 0.065 |
| D    | 8.38   | 9.65   | 0.330 | 0.380 |

|      | MILLIMETERS |       | INC       | HES   |
|------|-------------|-------|-----------|-------|
| DIM. | MIN.        | MAX.  | MIN.      | MAX.  |
| D1   | 6.86        | -     | 0.270     | -     |
| Е    | 9.65        | 10.67 | 0.380     | 0.420 |
| E1   | 6.22        | -     | 0.245     | ı     |
| е    | 2.54 BSC    |       | 0.100 BSC |       |
| Н    | 14.61       | 15.88 | 0.575     | 0.625 |
| L    | 1.78        | 2.79  | 0.070     | 0.110 |
| L1   | -           | 1.65  | ı         | 0.066 |
| L2   | -           | 1.78  | -         | 0.070 |
| L3   | 0.25 BSC    |       | 0.010     | BSC   |
| L4   | 4.78        | 5.28  | 0.188     | 0.208 |

ECN: S-82110-Rev. A, 15-Sep-08

DWG: 5970

#### Notes


- 1. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 2. Dimensions are shown in millimeters (inches).
- 3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body at datum A.
- 4. Thermal PAD contour optional within dimension E, L1, D1 and E1.
- 5. Dimension b1 and c1 apply to base metal only.
- 6. Datum A and B to be determined at datum plane H.
- 7. Outline conforms to JEDEC outline to TO-263AB.

Document Number: 91364 www.vishay.com Revision: 15-Sep-08





## RECOMMENDED MINIMUM PADS FOR D<sup>2</sup>PAK: 3-Lead



Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index



# **Legal Disclaimer Notice**

Vishay

## **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

SiHB15N65E-GE3