

N-Channel 30 V (D-S) MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	R _{DS(on)} (Ω) MAX.	I _D (A) ^a	Q _g (TYP.)			
30	0.095 at V _{GS} = 4.5 V	2.5				
	0.105 at V _{GS} = 2.5 V	2.3	3.7 nC			
	0.120 at V _{GS} = 1.8 V	2.2	3.7 110			
	0.165 at V _{GS} = 1.5 V	1.9				

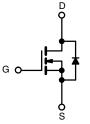
MICRO FOOT® 0.8 x 0.8 **Backside View Bump Side View**

Marking Code: xx = AI

xxx = Date/Lot traceability code

Ordering Information:

Si8808DB-T2-E1 (lead (Pb)-free and halogen-free)


FEATURES

- TrenchFET® power MOSFET
- Small 0.8 mm x 0.8 mm outline area
- Low 0.4 mm max. profile
- 30 V max. rating and low on-resistance
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS HALOGEN FREE

APPLICATIONS

- · Load switch
- · High speed switching
- DC/DC converters
- For smart phones, tablet PCs, and mobile computing

N-Channel MOSFET

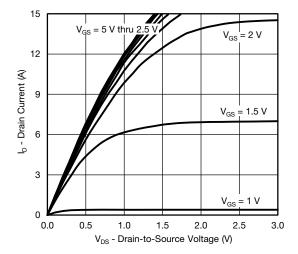
ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)					
PARAMETER	SYMBOL	LIMIT	UNIT		
Drain-Source Voltage		V _{DS}	30	V	
Gate-Source Voltage		V _{GS}	± 8	v	
	T _A = 25 °C		2.5 ^a		
Continuous Drain Courant (T. 150 °C)	T _A = 70 °C	1 .	2 ^a		
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	- I _D	1.8 ^b		
	T _A = 70 °C	1	1.4 ^b	A	
Pulsed Drain Current (t = 300 μs)		I _{DM}	10		
Continuous Source-Drain Diode Current	T _A = 25 °C		0.7 ^a		
Continuous Source-Drain Diode Current	T _A = 25 °C	- I _S	0.4 ^b		
	T _A = 25 °C		0.9 ^a		
Mayimum Dayyar Dissination	T _A = 70 °C]	0.6 ^a	w	
Maximum Power Dissipation	T _A = 25 °C	P _D	0.5 ^b	VV	
	T _A = 70 °C	1	0.3 b		
Operating Junction and Storage Temperatur	T _J , T _{stg}	-55 to +150	°C		
Soldering Recommendations (Peak Tempera		260			

THERMAL RESISTANCE RATINGS							
PARAMETER		SYMBOL	TYPICAL	MAXIMUM	UNIT		
Maximum Junction-to-Ambient a,d	+ < F o	В	105	135	°C/W		
Maximum Junction-to-Ambient b,e	t ≤ 5 s	R _{thJA}	200	260	1 0/00		

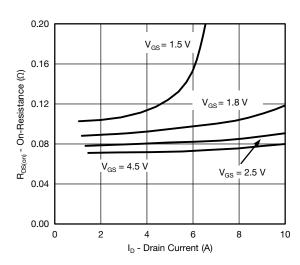
- a. Surface mounted on 1" x 1" FR4 board with full copper, t = 5 s.
- b. Surface mounted on 1" x 1" FR4 board with minimum copper, t = 5 s.
- c. Refer to IPC/JEDEC® (J-STD-020), no manual or hand soldering.
- d. Maximum under steady state conditions is 185 °C/W.
- e. Maximum under steady state conditions is 330 °C/W.

S15-0346-Rev. B, 23-Feb-15

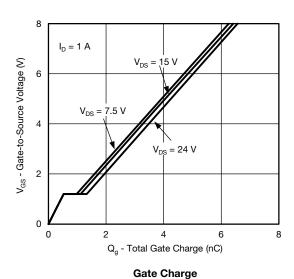
Vishay Siliconix


SPECIFICATIONS (T _J = 25 °C, u				70	1.00		
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Static	ı		<u> </u>	ı	<u> </u>		
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30	-	-	V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA	-	31	-	mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$.b	-	-2.3	-		
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	0.4	-	0.9	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$	-	-	± 100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	1	μΑ	
Zoro dato Voltago Brain Garrent	1000	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	-	-	10		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	5	-	-	Α	
		$V_{GS} = 4.5 \text{ V}, I_D = 1 \text{ A}$		0.071	0.095		
Drain-Source On-State Resistance a	R-ac	$V_{GS} = 2.5 \text{ V}, I_D = 1 \text{ A}$	-	0.079	0.105	Ω	
Diam-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 1.8 \text{ V}, I_D = 1 \text{ A}$	-	0.090	0.120	52	
		$V_{GS} = 1.5 \text{ V}, I_D = 0.5 \text{ A}$	-	0.105	0.165		
Forward Transconductance ^a	9fs	$V_{DS} = 15 \text{ V}, I_D = 1 \text{ A}$	-	10	-	S	
Dynamic ^b							
Input Capacitance	C _{iss}		-	330	-	pF	
Output Capacitance	C _{oss} V	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	40	-		
Reverse Transfer Capacitance	C _{rss}		-	16	-		
Tabal Oata Observe	Q_g Q_gs	V _{DS} = 15 V, V _{GS} = 8 V, I _D = 1 A	-	6.5	10	nC	
Total Gate Charge			-	3.7	5.6		
Gate-Source Charge		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 1 \text{ A}$	-	0.53	-		
Gate-Drain Charge	Q _{gd}		-	0.52	-		
Gate Resistance	R_g	f = 1 MHz	-	3.1	-	Ω	
Turn-On Delay Time	t _{d(on)}		-	5	10		
Rise Time	t _r	$V_{DD} = 15 \text{ V}, R_{I} = 15 \Omega$	-	12	25		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 1 \text{ A}, V_{GEN} = 8 \text{ V}, R_g = 1 \Omega$	-	15	30		
Fall Time	t _f		-	6	15		
Turn-On Delay Time	·		-	7	15	ns	
Rise Time	t _r			15	30		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 1 \text{ A, V}_{GEN} = 4.5 \text{ V, R}_g = 1 \Omega$	-	22	40	_	
Fall Time	t _f	1	-	10	20		
Drain-Source Body Diode Characteristic		1	1				
Continuous Source-Drain Diode Current	I _S	T _A = 25 °C	-	-	0.7		
Pulse Diode Forward Current	I _{SM}		-	-	10	Α	
Body Diode Voltage	V _{SD}	I _S = 1 A, V _{GS} = 0 V	-	0.7	1.2	V	
Body Diode Reverse Recovery Time	t _{rr}	5 , 40 -	-	11	20	ns	
Body Diode Reverse Recovery Charge	Q _{rr}	1	_	5	10	nC	
Reverse Recovery Fall Time	ta	$I_F = 1 \text{ A, dl/dt} = 100 \text{ A/}\mu\text{s, T}_J = 25 ^{\circ}\text{C}$	_	7	-	ns	
Reverse Recovery Rise Time	t _a		_	4	_		
Tieverse riceovery riise riirie			1		l		

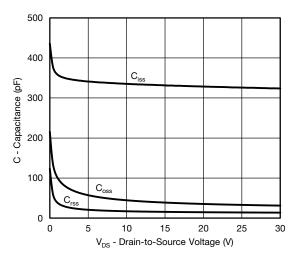
Notes


- a. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

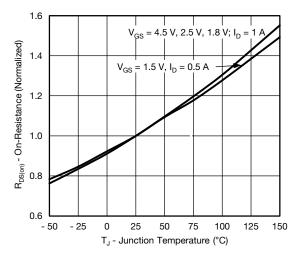
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



Output Characteristics

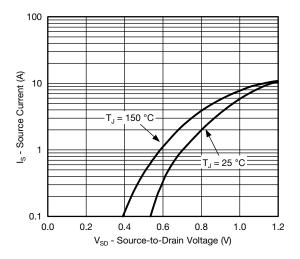


On-Resistance vs. Drain Current

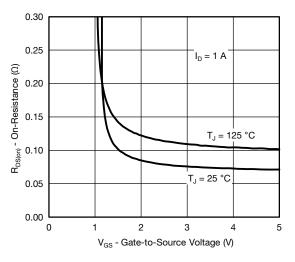


10 8 I_D - Drain Current (A) 6 4 T_{C.} = 25 °C T_C = 125 °C 55 °C 2 0.0 0.4 2.0 0.8 1.2 1.6 V_{GS} - Gate-to-Source Voltage (V)

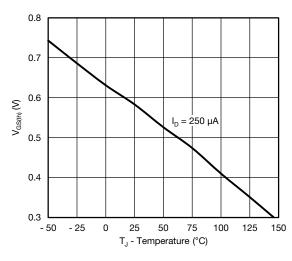
Transfer Characteristics

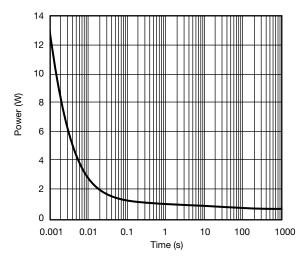


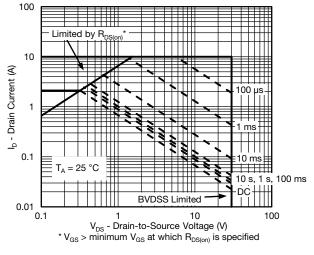
Capacitance



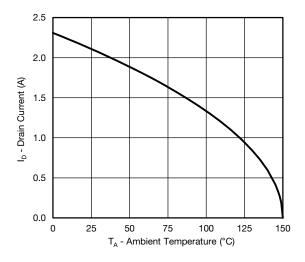
On-Resistance vs. Junction Temperature

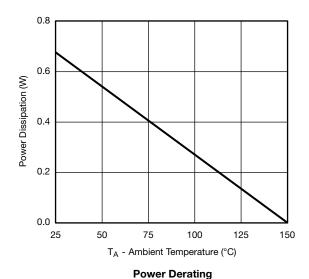



Source-Drain Diode Forward Voltage

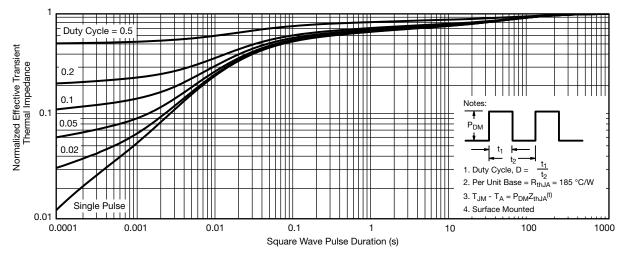

On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

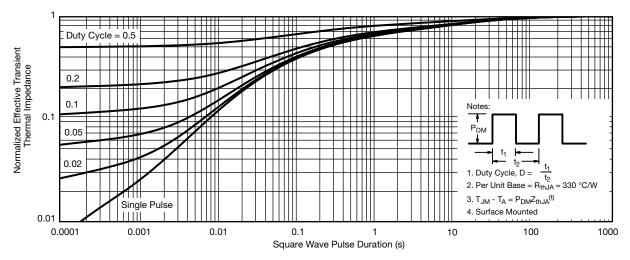



Single Pulse Power (Junction-to-Ambient)

Safe Operating Area, Junction-to-Ambient

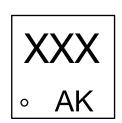

Current Derating*

Note

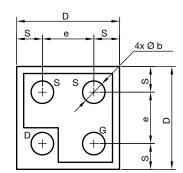

When mounted on 1" x 1" FR4 with full copper.

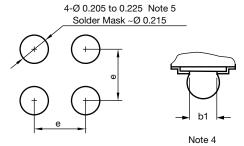
^{*} The power dissipation P_D is based on T_{J (max.)} = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

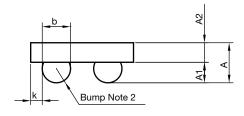
Normalized Thermal Transient Impedance, Junction-to-Ambient (On 1" x 1" FR4 Board with Maximum Copper)



Normalized Thermal Transient Impedance, Junction-to-Ambient (On 1" x 1" FR4 Board with Minimum Copper)


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62547.


Vishay Siliconix


MICRO FOOT®: 4-Bump (0.8 mm x 0.8 mm, 0.4 mm Pitch)

Mark on Backside of die

Notes

- (1) Laser mark on the backside surface of die
- (2) Bumps are 95.5 % Sn,3.8 % Ag,0.7 % Cu
- (3) "i" is the location of pin 1
- (4) "b1" is the diameter of the solderable substrate surface, defined by an opening in the solder resist layer solder mask defined.
- (5) Non-solder mask defined copper landing pad.

DIM.	MILLIMETERS a			INCHES		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	0.328	0.365	0.402	0.0129	0.0144	0.0158
A1	0.136	0.160	0.184	0.0053	0.0062	0.0072
A2	0.192	0.205	0.218	0.0076	0.0081	0.0086
b	0.200	0.220	0.240	0.0078	0.0086	0.0094
b1	0.175			0.0068		
е	0.400			0.0157		
S	0.160	0.180	0.200	0.0062	0.0070	0.0078
D	0.720	0.760	0.800	0.0283	0.0299	0.0314
K	0.040	0.070	0.100	0.0015	0.0027	0.0039

Note

a. Use millimeters as the primary measurement.

ECN: T15-0053-Rev. A, 16-Feb-15

DWG: 6033

Revision: 16-Feb-15 1 Document Number: 69442

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

SI8808DB-T2-E1