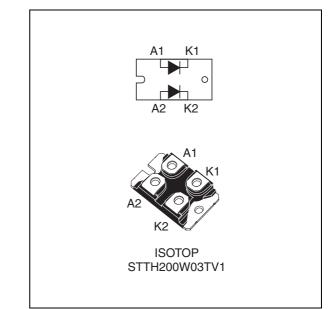


# STTH200W03TV1

### Turbo 2 ultrafast high voltage rectifier

#### Datasheet - production data


### **Features**

- Ultrafast switching
- Low reverse recovery current
- Low thermal resistance
- Reduces switching and conduction losses
- Insulated package
  - Insulating voltage = 2500 V rms
  - Capacitance = 45 pF
- Complies with UL standards (File ref: E81734)

### Description

The STTH200W03TV1, which uses ST Turbo 2, 300 V technology, is especially suited to be used for DC/AC and DC/AC converters in primary stage of MIG/MMA/TIG welding machine.

Packaged in ISOTOP, this device offers high power integration for all welding machines and industrial equipment.



#### Table 1. **Device summary**

|                       | ,         |
|-----------------------|-----------|
| Symbol                | Value     |
| I <sub>F(AV)</sub>    | 2 x 100 A |
| V <sub>RRM</sub>      | 300 V     |
| T <sub>j</sub> (max)  | 150 °C    |
| V <sub>F</sub> (typ)  | 0.95 V    |
| t <sub>rr</sub> (typ) | 40 ns     |

# 1 Characteristics

### Table 2.Absolute ratings (limiting values at T<sub>i</sub> = 25 °C, unless otherwise specified, per diode)

| Symbol               | Parameter                                                                 |           |     | Unit |
|----------------------|---------------------------------------------------------------------------|-----------|-----|------|
| V <sub>RRM</sub>     | Repetitive peak reverse voltage                                           |           |     | V    |
| I <sub>F(RMS)</sub>  | Forward rms current                                                       | Per diode | 145 | А    |
| I <sub>F(peak)</sub> | Average forward current, $\delta = 0.2$ Per diode T <sub>c</sub> = 105 °C |           | 200 | А    |
| I <sub>FSM</sub>     | Surge non repetitive forward current $t_p = 10$ ms Sinusoidal             |           | 800 | А    |
| T <sub>stg</sub>     | Storage temperature range                                                 |           |     | °C   |
| Тj                   | Maximum operating junction temperature                                    | 150       | °C  |      |

Table 3.Thermal parameters

| Symbol                                | Ра       | Value     | Unit |      |
|---------------------------------------|----------|-----------|------|------|
| Р                                     |          | Per diode | 0.7  | °C/W |
| R <sub>th(j-c)</sub> Junction to case | Total    | 0.4       | 0/00 |      |
| R <sub>th(c)</sub>                    | Coupling | ·         | 0.1  | °C/W |

When the two diodes 1 and 2 are used simultaneously:

 $\Delta T_{j}(diode \ 1)$  = P (diode 1) X R\_{th(j-c)} (per diode) + P (diode 2) x R\_{th(c)}

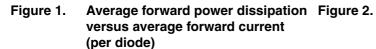
#### Table 4. Static electrical characteristics (per diode)

| Symbol                        | Parameter                                                                                                 | Test conditions         |                                   | Min. | Тур. | Max. | Unit |
|-------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------|------|------|------|------|
| L (1)                         | IR <sup>(1)</sup> Reverse leakage current                                                                 | T <sub>j</sub> = 25 °C  | V <sub>R</sub> = V <sub>RRM</sub> | -    |      | 100  | μA   |
| 'R`´                          |                                                                                                           | T <sub>j</sub> = 125 °C |                                   | -    | 100  | 1000 |      |
|                               | $V_F^{(2)}$ Forward voltage drop $ \frac{T_j = 25 \text{ °C}}{T_j = 150 \text{ °C}} I_F = 100 \text{ A} $ | I_ — 100 A              |                                   |      | 1.50 |      |      |
| V <sub>F</sub> <sup>(2)</sup> |                                                                                                           | T <sub>j</sub> = 150 °C | 1F = 100 X                        | -    | 0.95 | 1.15 | v    |
| VF Polward voltage drop       | T <sub>j</sub> = 25 °C                                                                                    | I <sub>F</sub> = 200 A  | -                                 |      | 1.80 | v    |      |
|                               | T <sub>j</sub> = 150 °C                                                                                   |                         | -                                 | 1.22 | 1.50 |      |      |

1. Pulse test:  $t_p = 5 \text{ ms}, \delta < 2\%$ 

2. Pulse test:  $t_p$  = 380 µs,  $\delta$  < 2%

To evaluate the conduction losses use the following equation:


 $P = 0.8 \text{ x } I_{F(AV)} + 0.0035 \text{ x } {I_F}^2_{(RMS)}$ 





| Symbol              | Parameter                | Test conditions                                                                                             |                                  | Min. | Тур. | Max. | Unit |
|---------------------|--------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------|------|------|------|------|
| I <sub>RM</sub>     | Reverse recovery current | $T_j = 125 \text{ °C}$ $I_F = 100 \text{ A}, V_R = 200 \text{ V}$<br>$dI_F/dt = -200 \text{ A}/\mu\text{s}$ |                                  | -    | 9    | 12   | А    |
| Q <sub>RR</sub>     | Reverse recovery charge  |                                                                                                             |                                  |      | 400  |      | nC   |
| S <sub>factor</sub> | Softness factor          |                                                                                                             |                                  |      | 0.3  |      |      |
| t <sub>rr</sub>     | Reverse recovery time    | $T_j = 25 \ ^{\circ}C$ $I_F = 1 \ A, \ V_R = 30 \ V$<br>$dI_F/dt = -100 \ A/\mu s$                          |                                  | -    | 40   | 50   | ns   |
| t <sub>fr</sub>     | Forward recovery time    | $T_j = 25 \text{ °C}$ $I_F = 100 \text{ A}, V_{FR} = 1.5 \text{ V}$                                         |                                  | -    |      | 2400 | ns   |
| V <sub>FP</sub>     | Forward recovery voltage | T <sub>j</sub> = 25 °C                                                                                      | c dI <sub>F</sub> /dt = 100 A/µs |      | 2    | 3    | V    |

 Table 5.
 Dynamic characteristics (per diode)



Forward voltage drop versus forward current (per diode)

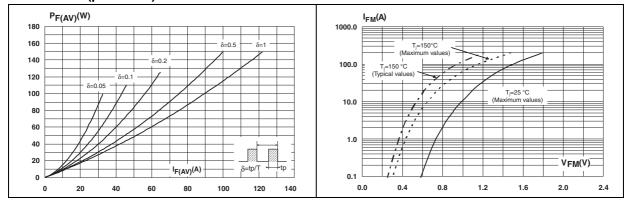
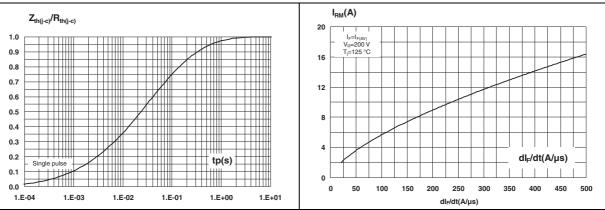




Figure 3. Relative variation of thermal impedance, junction to case, versus pulse duration

Figure 4. Peak reverse recovery current versus dl<sub>F</sub>/dt (typical values, per diode)



dl<sub>F</sub>/dt(A/µs)

S FACTOR

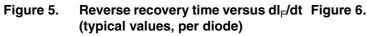
V<sub>R</sub>=200 V T<sub>i</sub>=125 °C

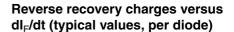
100 150 200 250 300 350 400 450

0.6

0.5

0.4


0.3


0.2

0.1

0.0

0 50





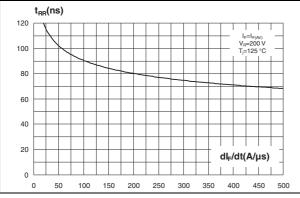
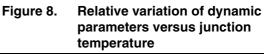




Figure 7. Reverse recovery softness factor versus dl<sub>F</sub>/dt (typical values, per diode)



Q<sub>RR</sub>(nC)

I<sub>F</sub>=I<sub>F(AV)</sub> V<sub>R</sub>=200 V T<sub>j</sub>=125 °C

800

700

600

500

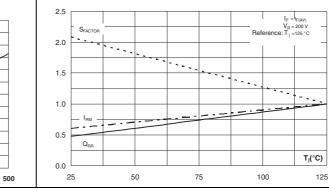
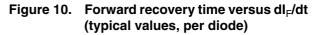
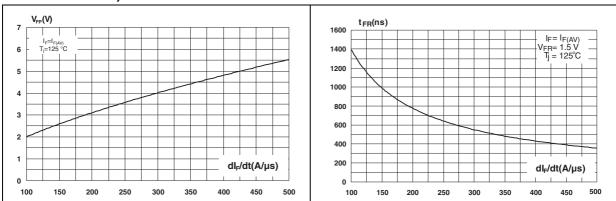
400 300

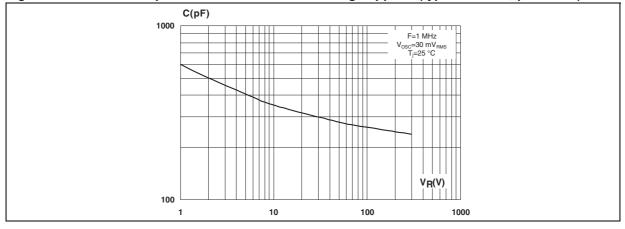
200

100

0

0 50 100 150 200 250 300 350 400 450 500

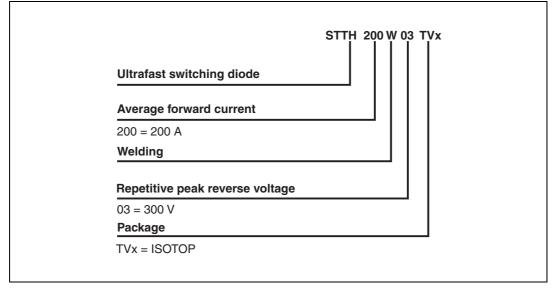


Figure 9. Transient peak forward voltage versus dl<sub>⊢</sub>/dt (typical values, per diode)





dl<sub>F</sub>/dt(A/µs)





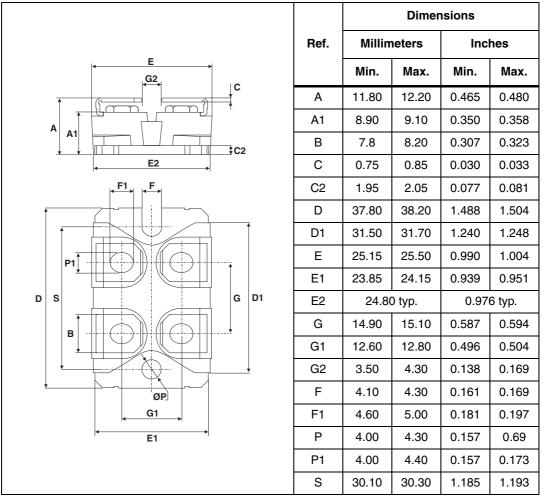

#### Figure 11. Junction capacitance versus reverse voltage applied (typical values, per diode)



# 2 Ordering information scheme








### **3** Package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: 1.3 N·m (1.5 N·m maximum)

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK<sup>®</sup> is an ST trademark.

Table 6. ISOTOP dimensions



# 4 Ordering information

#### Table 7.Ordering information

| Order code    | Marking       | Package | Weight                    | Base qty <sup>(1)</sup> | Delivery mode |
|---------------|---------------|---------|---------------------------|-------------------------|---------------|
| STTH200W03TV1 | STTH200W03TV1 | ISOTOP  | 27 g<br>without<br>screws | 10<br>with screws       | Tube          |

1. This product is supplied with 40 terminal screws and washers for each tube. The screws and washers are supplied in a separate pack with the order.

# 5 Revision history

#### Table 8.Document revision history

| Date        | Revision | Changes     |
|-------------|----------|-------------|
| 05-Oct-2012 | 1        | First issue |



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com



Doc ID 023614 Rev 1

# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STTH200W03TV1