

Datasheet - production data

N-channel 600 V, 0.260 Ω typ., 12 A MDMesh[™] DM2 Power MOSFET in a TO-220 package

TAB TAB TO-220

Figure 1: Internal schematic diagram

Features

Order code	r code V _{Ds} R _{DS(on)} max.		ΙD
STP18N60DM2	600 V	0.295 Ω	12 A

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh[™] DM2 fast recovery diode series. It offers very low recovery charge (Qrr) and time (trr) combined with low R_{DS(on)}, rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STP18N60DM2	18N60DM2	TO-220	Tube

DocID027674 Rev 3

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220 type A package information	10
5	Revisio	on history	

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	± 25	V
1-	Drain current (continuous) at T _{case} = 25 °C	12	٨
ID	Drain current (continuous) at T _{case} = 100 °C	7.6	A
Idm ⁽¹⁾	Drain current (pulsed)	48	А
Ртот	Total dissipation at T _{case} = 25 °C	90	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	40	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/115
T _{stg}	Storage temperature range	–55 to 150	°C
Tj	T _j Operating junction temperature range		

Notes:

 $^{\left(1\right) }$ Pulse width is limited by safe operating area.

 $\label{eq:ISD} ^{(2)} I_{SD} \leq 12 \; A, \; di/dt \leq 400 \; A/\mu S, \; V_{DS(peak)} < V_{(BR)DSS}, \; V_{DD} = 80\% \; V_{(BR)DSS}.$

 $^{(3)}$ V_{DS} \leq 480 V.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj} -case	Thermal resistance junction-case max.	1.39	°C M/
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	pol Parameter		Unit
lar ⁽¹⁾	Avalanche current, repetitive or not repetitive	2.5	А
E _{AR} ⁽²⁾	Single pulse avalanche energy	380	mJ

Notes:

 $^{\left(1\right) }$ Pulse width is limited by $T_{jmax}.$

 $^{(2)}$ starting T_{j} = 25 °C, I_{D} = $I_{AR},\,V_{DD}$ = 50 V.

Symbol

Ciss

 C_{oss}

Crss

 C_{oss}

eq.⁽¹⁾

 R_{G}

Qg

Qgs

Qgd

Notes:

Equivalent output

Total gate charge

Gate-source charge

Gate-drain charge

Intrinsic gate resistance

capacitance

increases from 0 to 80% V_{DSS}

Max.

-

-

-

-

-

-

-

-

80

5.6

20

5.2

8.5

-

-

-

-

-

Unit

pF

pF

pF

pF

pF

nC

nC

nC

2 **Electrical characteristics**

(T_{case}= 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			V
	Zara gata valtaga drain	$V_{GS} = 0 V, V_{DS} = 600 V$			1.5	μA
IDSS	I _{DSS} Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 600 V, T _{case} = 125 °C			100	μA
IGSS	Gate-body leakage current	$V_{DS} = 0 V$, $V_{GS} = \pm 25 V$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 6 \text{ A}$		0.260	0.295	Ω

Parameter	Test conditions	Min.	Тур.
Input capacitance		-	800
Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	40
Reverse transfer capacitance	$V_{GS} = 0 V$	-	1.33

f = 1 MHz, $I_D = 0 A$

behavior")

 $^{(1)}C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as Coss when VDs

 $V_{DD} = 480 V, I_D = 12 A,$

 V_{DS} = 0 to 480 V, V_{GS} = 0 V

 $V_{GS} = 10 V$ (see *Figure 15*:

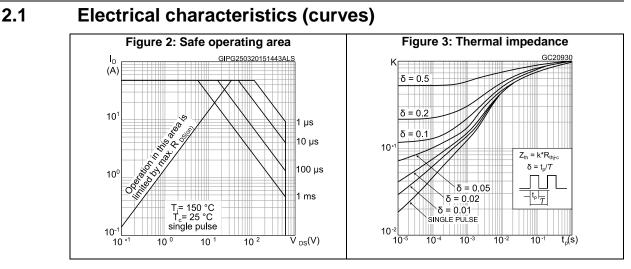
"Test circuit for gate charge

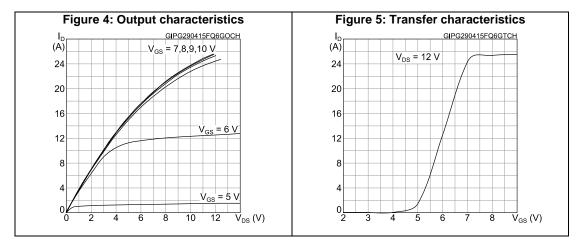
Table 6: Dynamic

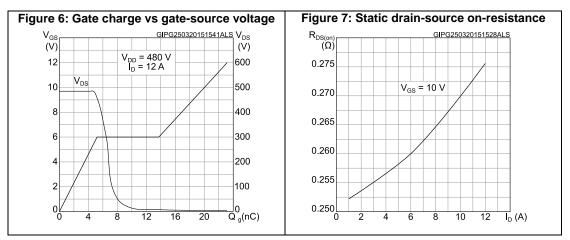
Table	7 .	Switching	times
Table		owncoming	unica

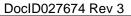
	· · · · · · · · · · · · · · · · · · ·						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 6 \text{ A}$	-	13.5	-	ns	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit for	-	8	-	ns	
t _{d(off)}	Turn-off-delay time	resistive load switching times"	I	9.5	-	ns	
tŕ	Fall time	and Figure 19: "Switching time waveform")	-	32.5	-	ns	

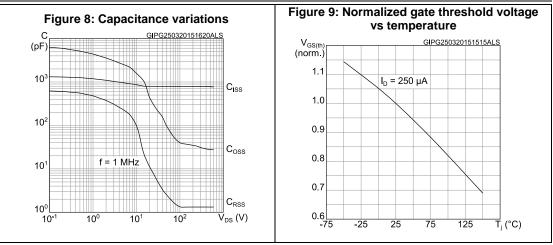
Electrical characteristics

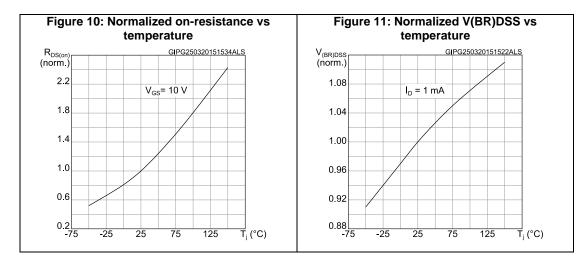

	Table 8: Source-drain diode							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
Isd	Source-drain current		-		12	А		
Isdm ⁽¹⁾	Source-drain current (pulsed)		-		48	А		
V _{SD} ⁽²⁾	Forward on voltage	$V_{GS} = 0 V, I_{SD} = 12 A$	-		1.6	V		
trr	Reverse recovery time	I _{SD} = 12 A,	-	125		ns		
Qrr	Reverse recovery charge	di/dt = 100 A/ μ s, V _{DD} = 60 V (see <i>Figure 16</i> :	-	0.675		nC		
Irrm	Reverse recovery current	"Test circuit for inductive load switching and diode recovery times")	-	11		А		
trr	Reverse recovery time	I _{SD} = 12 A,	-	190		ns		
Qrr	Reverse recovery charge	di/dt = 100 A/µs, V _{DD} = 60 V, T _i = 150 °C	-	1225		nC		
I _{RRM}	Reverse recovery current	(see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	13		A		

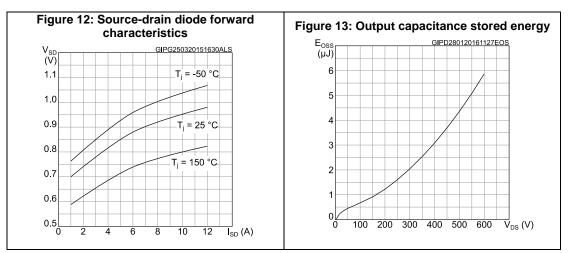

Notes:


⁽¹⁾ Pulse width is limited by safe operating area.

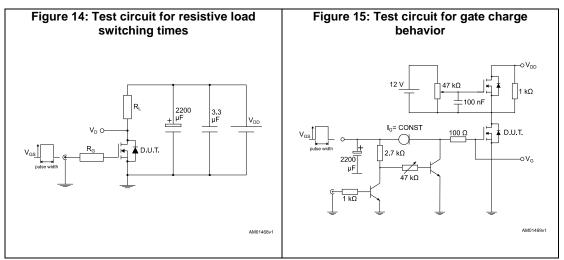

 $^{(2)}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

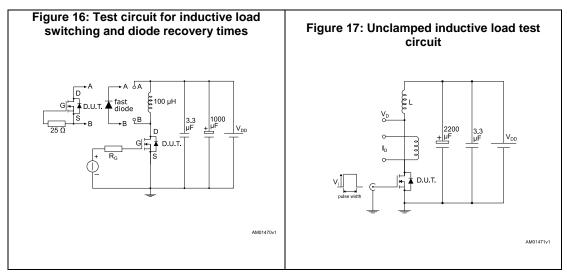


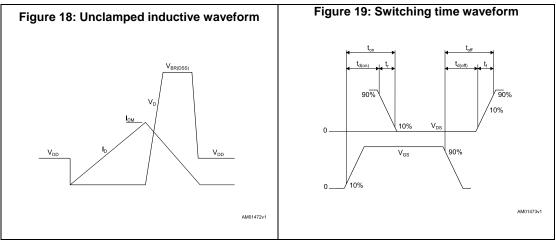




Electrical characteristics



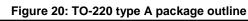


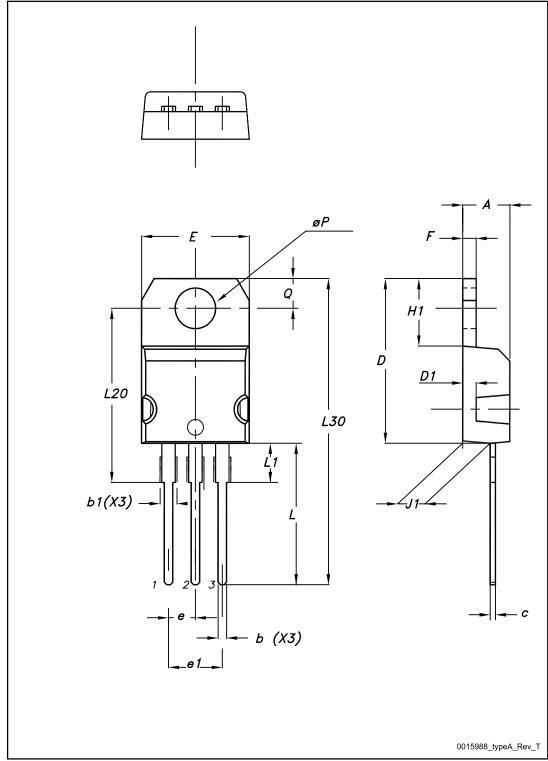

57

DocID027674 Rev 3

3 Test circuits

DocID027674 Rev 3




4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Package information

		Fackage information
Table 9: TO-220 typ	e A mechanical data	
	mm	
Min.	Тур.	Max.
4.40		4.60
0.61		0.88
1.14		1.70
0.48		0.70
15.25		15.75
	1.27	
10		10.40
2.40		2.70
4.95		5.15
1.23		1.32
6.20		6.60
2.40		2.72
13		14
3.50		3.93
	16.40	
	28.90	
3.75		3.85
2.65		2.95
	Min. 4.40 0.61 1.14 0.48 15.25 10 2.40 4.95 1.23 6.20 2.40 13 3.50 3.75	Min. Typ. 4.40 0.61 0.61 1 1.14 0.48 15.25 1.27 10 1.27 10 1.27 10 2.40 4.95 1.23 6.20 1.23 3.50 16.40 3.75 28.90

Revision history 5

Date	Revision	Changes
01-Apr-2015	1	First release.
21-May-2015	2	Text edits throughout document In Section 2.1 Electrical characteristics (curves): - updated Figure 4: Output characteristics - updated Figure 5: Transfer characteristics
28-Jan-2016	3	Updated Section 2.1: "Electrical characteristics (curves)"

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: <u>STP18N60DM2</u>