STL15DN4F5

Automotive-grade dual N-channel 40 V, 8 mΩ typ., 15 A STripFET™ F5 Power MOSFET in a PowerFLAT™ 5x6 DI

Datasheet - production data

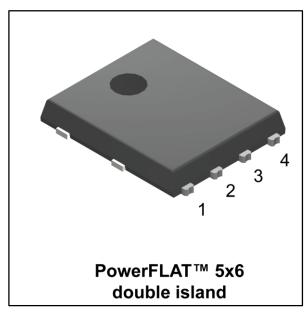
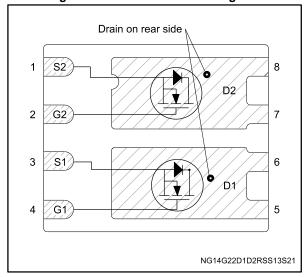



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STL15DN4F5	40 V	9 mΩ	15 A

- Designed for automotive applications and AEC-Q101 qualified
- Extremely low R_{DS(on)}
- Very low gate charge
- Low gate drive power loss
- Wettable flank package

Applications

Switching applications

Description

This device is a dual N-channel Power MOSFET developed using STMicroelectronics' STripFET™ F5 technology. The device has been optimized to achieve very low on-state resistance, contributing to a FoM that is among the best in its class.

Table 1: Device summary

Order code	Marking	Package	Packing
STL15DN4F5	15DN4F5	PowerFLAT [™] 5x6 double island	Tape and reel

July 2016 DocID17739 Rev 4 1/16

Contents STL15DN4F5

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT 5x6 double island WF type C package information	10
	4.2	Packing information	13
5	Revisio	n history	15

STL15DN4F5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	40	V	
V_{GS}	Gate-source voltage	±20	V	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	60	Α	
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 25 °C	15	Α	
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 100°C	10	Α	
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	60	Α	
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25 °C 60			
P _{TOT} ⁽²⁾	Total dissipation at T _{pcb} = 25°C	4.3	W	
Tj	Operating junction temperature range	FF to 17F	°C	
T _{stg}	Storage temperature range -55 to 175			

Notes:

Table 3: Thermal resitance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.5	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	35	°C/W

Notes:

Table 4: Avalanche data

Symbol	Parameter	Value	Unit
l _{AV}	Not-repetitive avalanche current, (pulse width limited by Tj max.)	7.5	Α
E _{AS} ⁽¹⁾	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AV}$, $V_{DD} = 24$ V)	150	mJ

Notes:

⁽¹⁾Tested at wafer level only.

 $^{^{(1)} \}mbox{The value}$ is rated according $R_{\mbox{\scriptsize thj-c.}}$

 $^{^{(2)}}$ The value is rated according $R_{\text{thj-pcb}}$.

 $[\]ensuremath{^{(3)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(1)}}$ When mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 s.

Electrical characteristics STL15DN4F5

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 5: On/Off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 250 μA, V _{GS} = 0 V	40			>
Ipss	Zero gate voltage	$V_{GS} = 0 V,$ $V_{DS} = 40 V$			1	μA
IDSS	drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V},$ $T_{C} = 125 \text{ °C} (1)$			10	μΑ
I _{GSS}	Gate-body leakage current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on-resistance	V _G S = 10 V, I _D = 7.5 A		8	9	mΩ

Notes:

Table 6: Dynamic

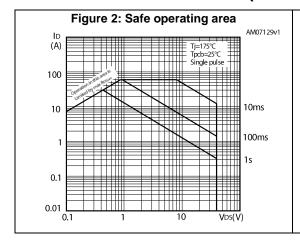
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		ı	1550	ı	
Coss	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz},$	ı	230	ı	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	ı	25	1	Pi
Qg	Total gate charge	$V_{DD} = 20 \text{ V}, I_D = 15 \text{ A},$	1	25	1	
Qgs	Gate-source charge	V _{GS} = 10 V	ı	6	ı	nC
Q_{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	5.5	-	

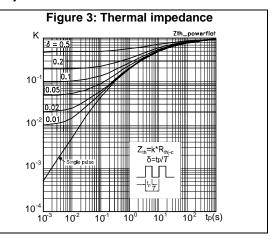
Table 7: Switching times

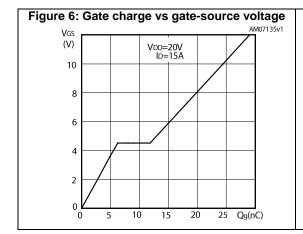
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V 20 V I 7.5 A	-	18	-	
tr	Rise time	$V_{DD} = 20 \text{ V}, I_D = 7.5 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	45	-	
t _{d(off)}	Turn-off delay time	(see Figure 13: "Test circuit for	-	32	-	ns
t _f	Fall time	resistive load switching times")	-	5	-	

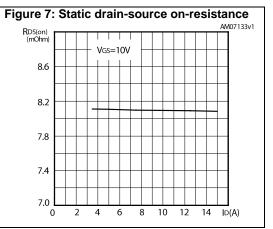
 $^{^{(1)}}$ Defined by design, not subject to production test

Table 8: Source-drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Forward on voltage		-		15	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		60	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0, I _{SD} = 15 A	-		1.1	V
t _{rr}	Reverse recovery time	I _{SD} = 15 A, di/dt = 100 A/µs	-	30		ns
Qrr	Reverse recovery charge	$V_{DD} = 32 \text{ V}, T_i = 150 \text{ °C}$ (see Figure 15: "Test circuit for	-	35		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	2.2		А


Notes:


⁽¹⁾Pulse width limited by safe operating area


 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5 %

2.2 Electrical characteristics (curves)

STL15DN4F5 Electrical characteristics

Figure 8: Capacitance variations

C(pF)

1000

Ciss

Coss

Coss

Crss

Vos(V)

Pigure 9: Normalized gate threshold voltage vs temperature

VGS(th) (norm)

1.00

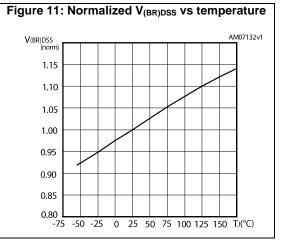
0.8

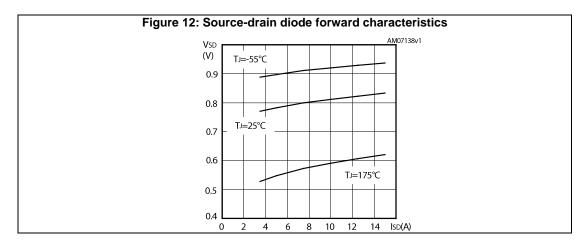
0.4

-75 -50 -25 0 25 50 75 100 125 150 TJ(°C)

Figure 10: Normalized on-resistance vs temperature

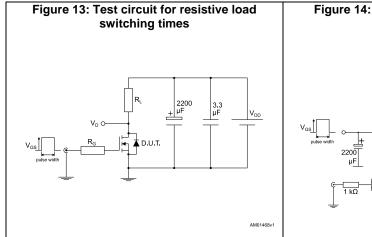
RDS(on) (norm)

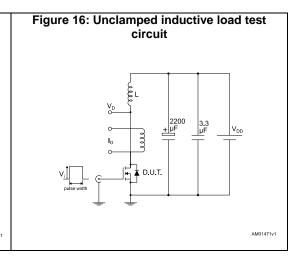

2.0

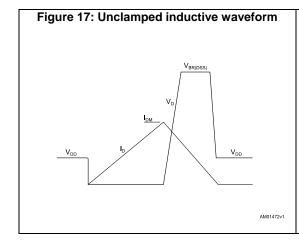

1.5

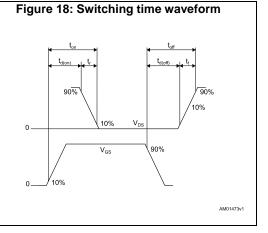
1.0

0.5


-75 -50 -25 0 25 50 75 100 125 150 TJ(°C)






Test circuits STL15DN4F5

3 Test circuits

577

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 PowerFLAT 5x6 double island WF type C package information

Figure 19: PowerFLAT™ 5x6 double island WF type C package outline



Table 9: PowerFLAT™ 5x6 double island WF type C mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
Α	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.10
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.10
D5	0.25	0.40	0.55
D6	0.15	0.30	0.45
D7	1.68		1.98
е		1.27	
E	6.20	6.40	6.60
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.85	1.00	1.15
E8	0.55		0.75
E9	4.00	4.20	4.40
E10	3.55	3.70	3.85
L	0.90	1.00	1.10
L1	0.175	0.275	0.375
K	1.05		1.35
θ	0°		12°

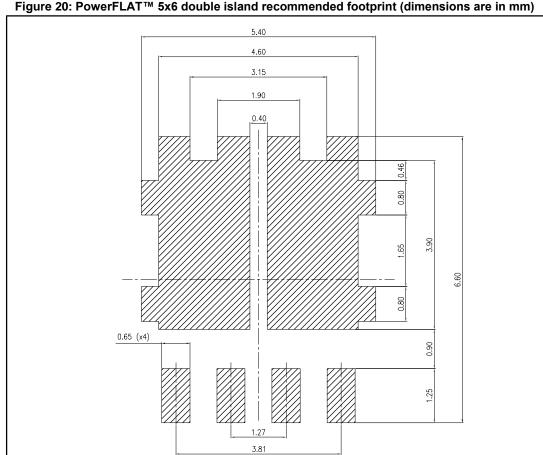


Figure 20: PowerFLAT™ 5x6 double island recommended footprint (dimensions are in mm)

8256945_FP_std_R16

STL15DN4F5 Package information

4.2 Packing information

Figure 21: PowerFLAT™ 5x6 WF tape (dimensions are in mm)

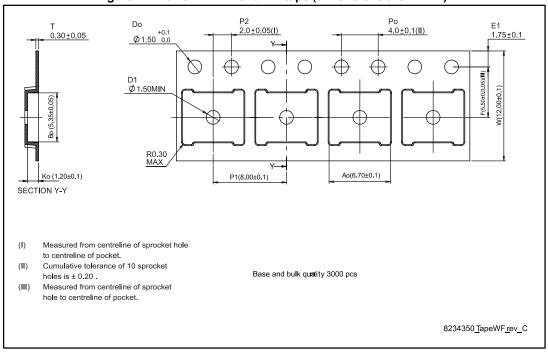
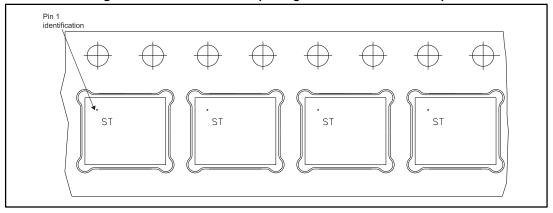



Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

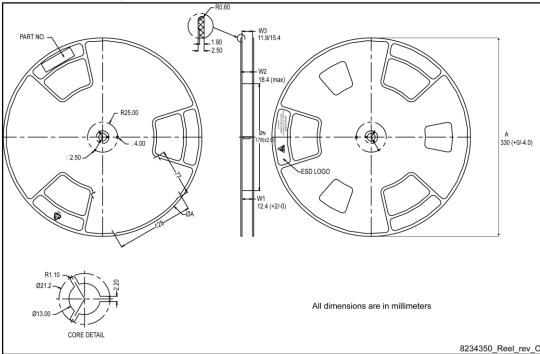


Figure 23: PowerFLAT™ 5x6 reel (dimensions are in mm)

STL15DN4F5 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
02-Sep-2010	1	First release.
01-Jul-2014	2	Updated: Section 4: Package information. Minor text changes
13-Feb-2015	3	Updated Section 4: Package information. Added Section 5: Packaging information
06-Jul-2016	4	Updated: Section 6.1: "PowerFLAT 5x6 double island WF type C package information". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STL15DN4F5