

Automotive-grade N-channel 40 V, 3.0 mΩ typ., 55 A STripFET™ F6 Power MOSFET in a PowerFLAT™ 5x6 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID	Ртот
STL120N4LF6AG	40 V	3.6 mΩ	55 A	96 W

- Designed for automotive applications and AEC-Q101 qualified
- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss
- Wettable flank package

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using the STripFETTM F6 technology with a new trench gate structure. The resulting Power MOSFET exhibits very low R_{DS(on)} in all packages.

Table 1: Device summary

Order code	Marking	Package	Packing
STL120N4LF6AG	120N4LF6	PowerFLAT™ 5x6	Tape and reel

DocID028273 Rev 2

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x6 WF type R package information	9
	4.2	PowerFLAT™ 5x6 WF packing information	12
5	Revisio	n history	14

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	40	V
V _{DS}	Drain-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _c = 25 °C	55	А
ID ⁽¹⁾	Drain current (continuous) at Tc= 100 °C	55	А
I _{DM} ⁽²⁾	Drain current (pulsed)	220	А
Ртот	Total dissipation at $T_c = 25 \ ^{\circ}C$	96	W
T _{stg}	Storage temperature range	55 to 175	°C
Tj	Operating junction temperature range	- 55 to 175	°C

Notes:

 $^{(1)}$ Drain current is limited by package, the current capability of the silicon is 120 A at 25 $^{\circ}\text{C}$

 $^{\left(2\right) }$ Pulse width is limited by safe operating area

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case	1.56	°C AM
Rthj-pcb ⁽¹⁾	Thermal resistance junction-pcb	31.3	°C/W

Notes:

⁽¹⁾When mounted on 1 inch² 2 Oz. Cu board, t \leq 10 s

Table 4: Avalanche characteristics

Symbol	Parameter		Unit
lav	Avalanche current, repetitive or not repetitive (pulse width limited by maximum junction temperature)	26	А
Eas	Single pulse avalanche energy $(T_j = 25 \text{ °C}, I_C = I_{AV}, V_{DD} = 25 \text{ V})$	200	mJ

2 **Electrical characteristics**

(T_C= 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	40			V
Zana nata walta na Duain		$V_{GS} = 0 V, V_{DS} = 40 V$			1	μA
IDSS	Zero gate voltage Drain current	$V_{GS} = 0 V, V_{DS} = 40 V,$ $T_J = 125 °C^{(1)}$			10	μA
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			±100	nA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	1		3	V
D	Static drain-source on-	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 13 \text{ A}$		3.0	3.6	mΩ
R _{DS(on)}	resistance	$V_{GS} = 5 \text{ V}, \text{ I}_{D} = 13 \text{ A}$		3.2	4.5	11122

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	4260	-	
Coss	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0 V	-	647	-	pF
Crss	Reverse transfer capacitance	VD3 - 20 V, I - I IVIII2, VG3 - 0 V	-	373	-	Ρ.
Qg	Total gate charge	$V_{DD} = 20 \text{ V}, I_D = 26 \text{ A}, V_{GS} = 10 \text{ V}$	-	80	-	
Qgs	Gate-source charge		-	15	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	15	-	
R_G	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	-	1.5	-	Ω

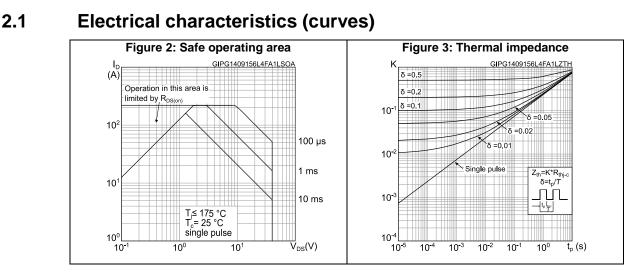
Table 6: Dynamic

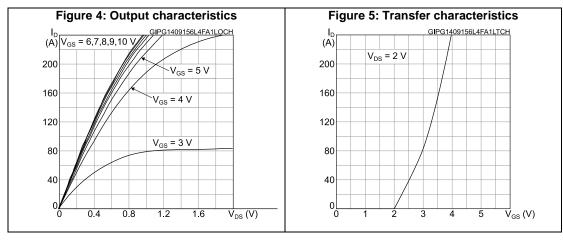
Table 7: Switching times

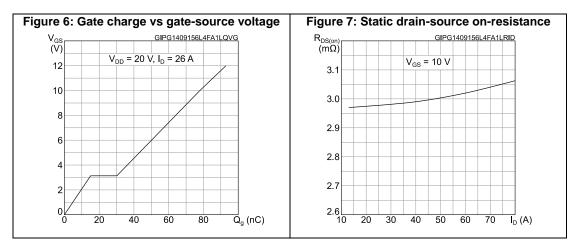
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 20 V, I _D = 13 A R _G = 4.7 Ω, V _{GS} = 10 V	-	20	-	
tr	Rise time		-	70	-	
t _{d(off)}	Turn-off- delay time	(see Figure 13: "Test circuit for resistive load switching times" and Figure 18:	-	40	-	ns
t _f	Fall time	"Switching time waveform")	-	20	-	

Electrical characteristics

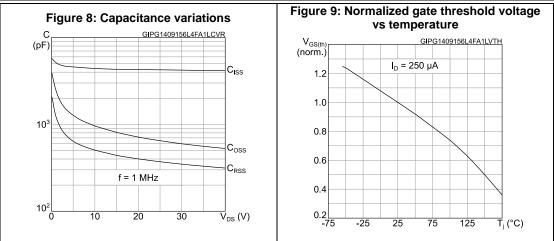
	Table 8: Source drain diode					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd ⁽¹⁾	Source-drain current		-		26	А
Isdm ⁽²⁾	Source-drain current (pulsed)		-		104	А
V _{SD} ⁽³⁾	Forward on voltage	$V_{GS} = 0 V, I_{SD} = 13 A$	-		1.1	V
trr	Reverse recovery time	I _{SD} = 26 A, di/dt = 100 A/µs, V _{DD} = 25 V	-	40		ns
Qrr	Reverse recovery charge	(see Figure 15: "Test circuit for inductive	-	5.6		nC
Irrm	Reverse recovery current	load switching and diode recovery times")	-	2.8		А

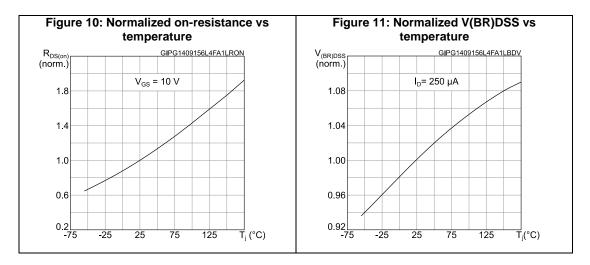

Notes:

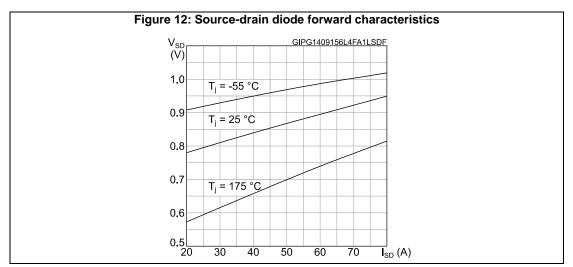

 $^{(1)}\mbox{This}$ value is rated according to $R_{thj\mbox{-}pcb}$


 $^{(2)}\mbox{Pulse}$ width is limited by safe operating area

 $^{(3)}\text{Pulse test:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

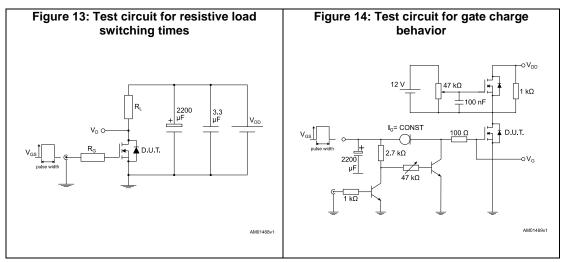


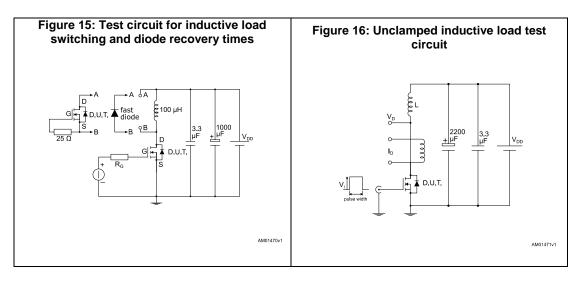




57

Electrical characteristics





DocID028273 Rev 2

3 Test circuits

DocID028273 Rev 2

57

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 PowerFLAT[™] 5x6 WF type R package information

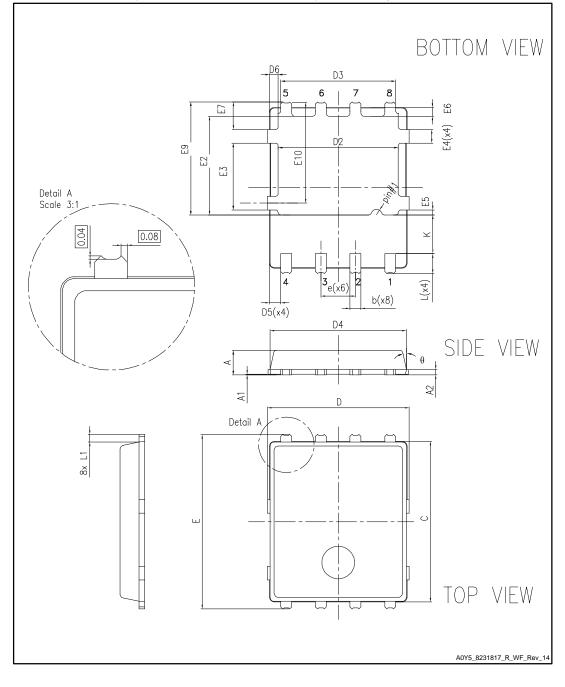
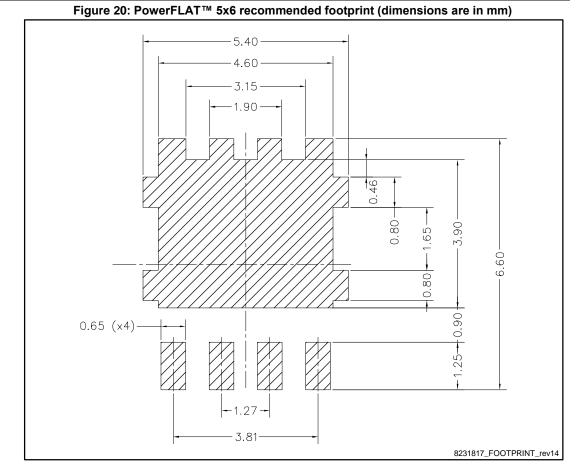


Figure 19: PowerFLAT™ 5x6 WF type R package outline

DocID028273 Rev 2


Package information

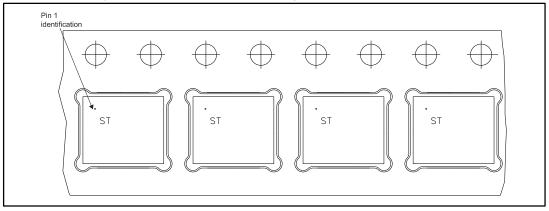
STL120N4LF6AG

nformation	formation STL120N4LF6AG				
T	able 9: PowerFLAT™ 5x6	WF type R mechanical of	lata		
Dim.		mm			
Dini.	Min.	Тур.	Max.		
А	0.80		1.00		
A1	0.02		0.05		
A2		0.25			
b	0.30		0.50		
С	5.80	6.00	6.10		
D	5.00	5.20	5.40		
D2	4.15		4.45		
D3	4.05	4.20	4.35		
D4	4.80	5.00	5.10		
D5	0.25	0.4	0.55		
D6	0.15	0.3	0.45		
е		1.27			
E	6.20	6.40	6.60		
E2	3.50		3.70		
E3	2.35		2.55		
E4	0.40		0.60		
E5	0.08		0.28		
E6	0.20	0.325	0.45		
E7	0.85	1.00	1.15		
E9	4.00	4.20	4.40		
E10	3.55	3.70	3.85		
К	1.275		1.575		
L	0.725	0.825	0.925		
L1	0.175	0.275	0.375		
θ	0°		12°		

57

Package information

57


DocID028273 Rev 2

11/15

Figure 21: PowerFLAT™ 5x6 WF tape (dimensions are in mm) P2 2.0±0.05(l) Po 4.0±0.1(**II**) Do E1 1.75±0.1 Т Ø1.50 0.0 0.30±0.05 Y_ \oslash \oplus \bigcirc \bigcirc \oplus \oplus \bigcirc \bigcirc F(5.50±0.0.05)(III) D1 Ø1.50MIN W(12.00±0.1) Bo (5.35±0.05) R0.30 MAX Ao(6.70±0.1) Ko (1.20±0.1) P1(8.00±0.1) SECTION Y-Y (I) Measured from centreline of sprocket hole to centreline of pocket. (II) Cumulative tolerance of 10 sprocket Base and bulk quatity 3000 pcs holes is ± 0.20. Measured from centreline of sprocket (III) hole to centreline of pocket. 8234350<u>T</u>apeWF<u>r</u>ev_C

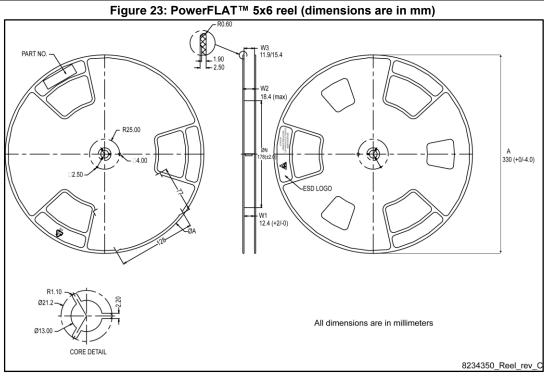

4.2 PowerFLAT[™] 5x6 WF packing information

Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

Package information

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
25-Sep-2015	1	First release.
15-Apr-2016	2	Updated title, description and features in cover page . Updated <i>Table 2: "Absolute maximum ratings"</i> and <i>Table 5: "On/off states"</i> . Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STL120N4LF6AG