

STL11N6F7

N-channel 60 V, 10 mΩ typ., 11 A STripFET[™] F7 Power MOSFET in a PowerFLAT[™] 3.3x3.3 package

Datasheet - production data

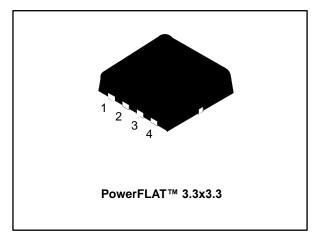
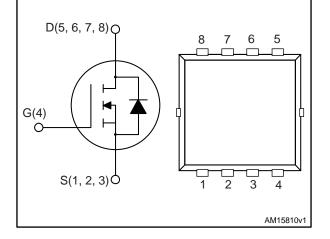



Figure 1: Internal schematic diagram

Features

Order code	V_{DS}	R _{DS(on)} max.	ID
STL11N6F7	60 V	12 mΩ	11 A

Features

- Among the lowest R_{DS(on)} on the market
- Excellent figure of merit (FoM)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

• Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STL11N6F7	11N6F	PowerFLAT™ 3.3x3.3	Tape and reel

DocID028134 Rev 2

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curve)	5
3	Test cir	cuits	7
4	Packag	e mechanical data	8
	4.1	PowerFLAT 3.3x3.3 package information	9
5	Revisio	n history	12

1 Electrical ratings

 Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	60	V
V _{GS}	Gate source voltage	±20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	47	А
	Drain current (continuous) at T _C = 100 °C	30	A
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	188	А
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} = 25 °C	11	٨
ID, 7	Drain current (continuous) at T _{pcb} = 100 °C	7	A
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	44	А
P _{TOT} ⁽¹⁾	Total dissipation at $T_c = 25 \text{ °C}$	48	W
Ртот ⁽³⁾	Total dissipation at $T_{pcb} = 25 \text{ °C}$	2.9	W
TJ	Operating junction temperature	-55 to 150	0°
T _{stg}	T _{stg} Storage temperature		

Notes:

 $^{(1)}\mbox{This}$ value is rated according to $R_{\mbox{thj-c}}$

 $^{\rm (2)}{\rm Pulse}$ width limited by safe operating area

 $^{(3)}\mbox{This}$ value is rated according to $R_{\mbox{thj-pcb}}$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max		°C/W
R _{thj-case}	R _{thj-case} Thermal resistance junction-case max		°C/W

Notes:

 $^{(1)}$ When mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 sec

2 Electrical characteristics

(T_c = 25 °C unless otherwise specified)

	Tal	ole 4: Static				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I_D = 1mA, V_{GS} = 0 V	60			V
I _{DSS}	Zero gate voltage drain current	V_{GS} = 0 V , V_{DS} =60 V			1	μA
I _{GSS}	Gate-body leakage current	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2		4	V
R _{DS(on)}	Static drain-source on-resistance	V_{GS} = 10 V, I_{D} = 5.5 A		10	12	mΩ

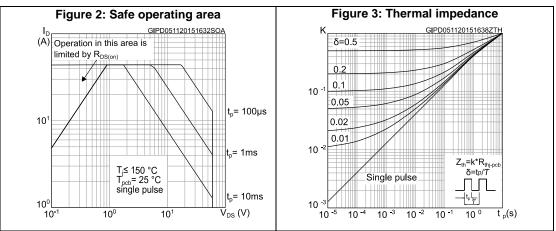
Table 5: Dynamic

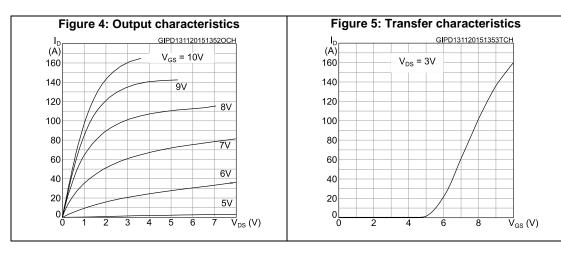
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1035	-	pF
Coss	Output capacitance	V _{DS} = 30 V, f = 1 MHz, V _{GS} = 0 V	-	450	-	pF
C _{rss}	Reverse transfer capacitance	VDS = 50 V, I = I WI12, VGS = 0 V		53	-	pF
Qg	Total gate charge	$V_{DD} = 30 \text{ V}, I_D = 11 \text{ A},$	-	17	-	nC
Q_gs	Gate-source charge	V _{GS} = 10 V	-	5.7	•	nC
Q_gd	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	5.7	-	nC

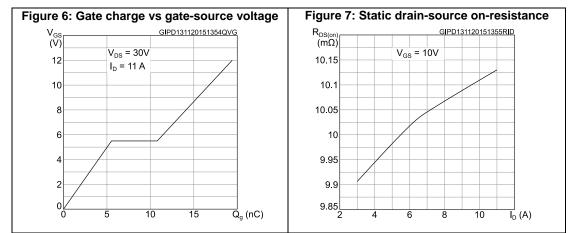
Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 \text{ V}, \text{ I}_{D} = 5.5 \text{ A},$	-	14.5	-	ns
tr	Rise time	$R_{\rm G} = 4.7 \ \Omega, \ V_{\rm GS} = 10 \ V$	-	15.3	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13: "Test circuit for resistive load switching times")	-	19.4	-	ns
t _f	Fall time		-	8	-	ns

Table 7: Source-drain diode

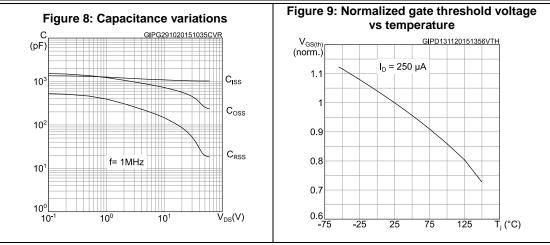

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	$I_{SD} = 11 \text{ A}, V_{GS} = 0 \text{ V}$	-		1.2	V
t _{rr}	Reverse recovery time	I _D = 11 A, di/dt = 100 A/µs		26.8		ns
Qrr	Reverse recovery charge	V _{DD} = 48 V (see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	14.2		nC
I _{RRM}	Reverse recovery current		-	1.06		А

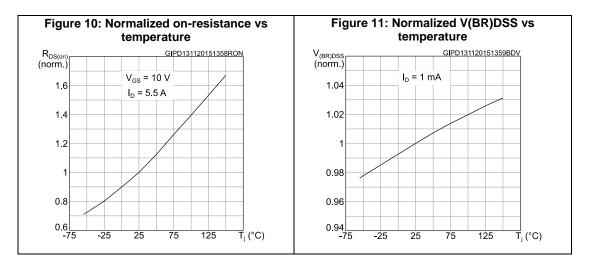

Notes:

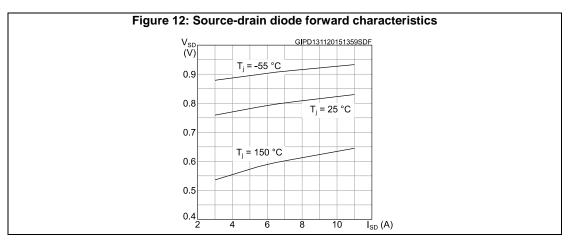


⁽¹⁾Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curve)

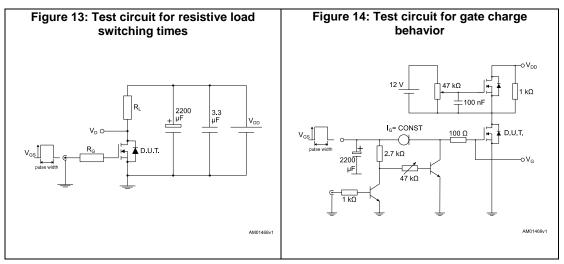


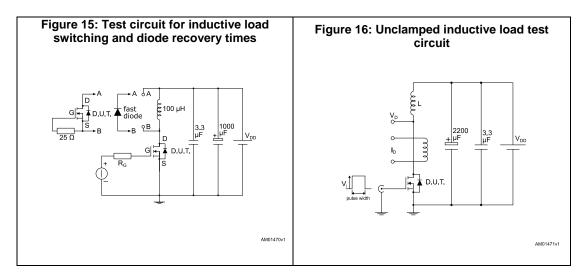


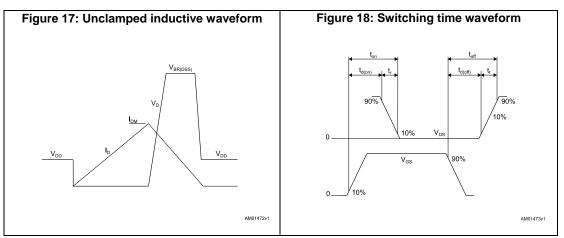


57

STL11N6F7

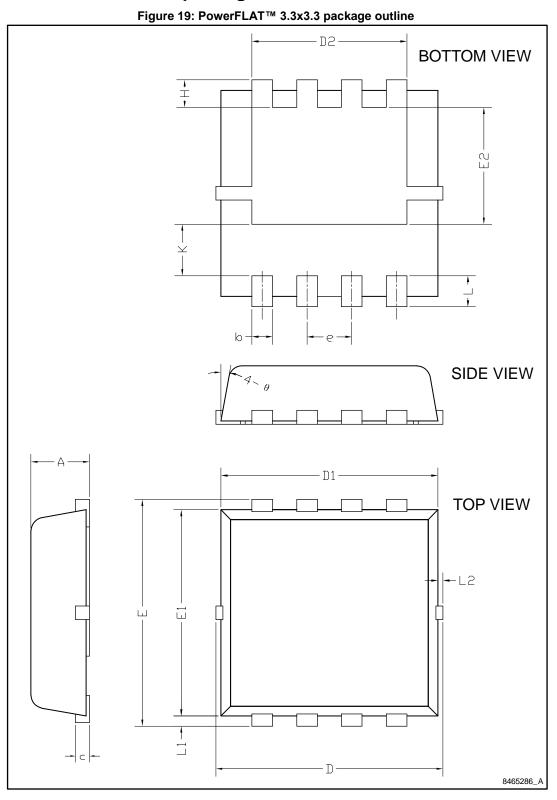






3 Test circuits

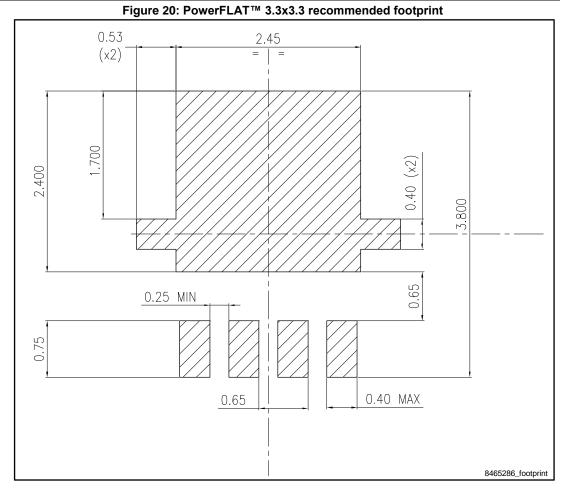
57


4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

57

4.1 **PowerFLAT 3.3x3.3 package information**



Package information

Table 8: PowerFLAT™ 3.3x3.3 package mechanical data

		ere pressage meeninger					
Dim.		mm					
Dini.	Min.	Тур.	Max.				
A	0.70	0.80	0.90				
b	0.25	0.30	0.39				
с	0.14	0.15	0.20				
D	3.10	3.30	3.50				
D1	3.05	3.15	3.25				
D2	2.15	2.25	2.35				
е	0.55	0.65	0.75				
E	3.10	3.30	3.50				
E1	2.90	3.00	3.10				
E2	1.60	1.70	1.80				
н	0.25	0.40	0.55				
К	0.65	0.75	0.85				
L	030	0.45	0.60				
L1	0.05	0.15	0.25				
L2			0.15				
θ	8°	10°	12°				

Revision history 5

Table 9: Document revision history

Date	Revisi on	Changes
21-Jul-2015	1	First release.
17-Nov-2015	2	Document status changed from preliminary to production data. Updated title and features in cover page Updated <i>Table 2: "Absolute maximum ratings"</i> and <i>Section 4: "Electrical characteristics"</i> . Added <i>Section 4.1: "Electrical characteristics (curve)"</i> . Minor text changes

STL11N6F7

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STL11N6F7