

STGP35HF60W

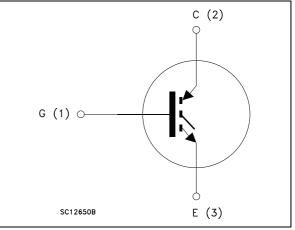
35 A, 600 V Ultrafast IGBT

Datasheet - production data

Features

- Improved E_{off} at elevated temperature
- Minimal tail current
- Low conduction losses

Applications


- Welding
- High frequency converters
- Power factor correction

Description

This Ultrafast IGBT is developed using a new planar technology to yield a device with tighter switching energy variation (E_{off}) versus temperature. The suffix "W" denotes a subset of products designed for high switching frequency operation (over 100 kHz).

Figure 1. Internal schematic diagram

Table 1. Device summary

Order codes	Markings	Packages	Packaging
STGP35HF60W	GP35HF60W	TO-220	Tube

```
November 2012
```

Doc ID 023894 Rev 1

This is information on a product in full production.

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data 10	D
5	Revision history	2

1 Electrical ratings

Table 2.	Absolute	maximum	ratings
	/10001010	maximani	racingo

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600	V
I _C ⁽¹⁾	Continuous collector current at $T_C = 25 \ ^{\circ}C$	60	А
$I_{C}^{(1)}$	Continuous collector current at $T_c = 100 \text{ °C}$	35	А
$I_{CP}^{(2)}$	Pulsed collector current	150	А
I _{CL} ⁽³⁾	Turn-off latching current	80	А
V_{GE}	Gate-emitter voltage	± 20	V
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	200	W
T _{stg}	Storage temperature	– 55 to 150	°C
Тj	Operating junction temperature	- 55 10 150	

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

2. Pulse width limited by maximum junction temperature and turn-off within RBSOA

3. V_{CLAMP} = 80% (V_{CES}), V_{GE} = 15 V, R_G = 10 $\Omega,$ T_J = 150 $^{\circ}\text{C}$

Symbol Parameter		Value	Unit
R _{thj-case}	Thermal resistance junction-case IGBT	0.63	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

2 Electrical characteristics

 $T_J = 25 \ ^{\circ}C$ unless otherwise specified)

Table 4.	Static
	Juano

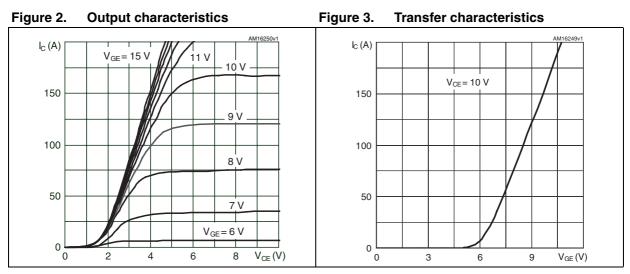
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	600			V
Maria	Collector-emitter	V _{GE} = 15 V, I _C = 20 A			2.5	v
V _{CE(sat)}	saturation voltage	$V_{GE} = 15V, I_{C} = 20 \text{ A}, T_{J} = 125 \text{ °C}$		1.65		v
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}, I_C = 1 \text{ mA}$	3.75		5.75	V
I _{CES}	Collector cut-off current	V _{CE} = 600 V			250	μA
'CES	(V _{GE} = 0)	V _{CE} = 600 V, T _J = 125 °C			1	mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ±20 V			± 100	nA

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0	-	2400 235 50	-	pF pF pF
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	$V_{CE} = 400 \text{ V}, I_{C} = 20 \text{ A},$ $V_{GE} = 15 \text{ V},$ <i>(see Figure 16)</i>	-	140 13 52	-	nC nC nC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 400 \text{ V}, I_C = 20 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ (see Figure 15)	-	30 15 1650	-	ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 400 \text{ V}, I_C = 20 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_J = 125 \text{ °C} (see Figure 15)$	-	30 15 1600	-	ns ns A/µs
t _r (V _{off}) t _{d(off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 400 \text{ V}, I_{C} = 20 \text{ A},$ $R_{GE} = 10 \Omega, V_{GE} = 15 \text{ V}$ (see Figure 15)	-	30 175 40	-	ns ns ns
$t_r(V_{off}) \ t_d(_{off}) \ t_f$	Off voltage rise time Turn-off delay time Current fall time	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 400 \; V, \; I_{C} = 20 \; A, \\ R_{GE} = 10 \; \Omega, \; V_{GE} = 15 \; V, \\ T_{J} = 125 \; ^{\circ}C \\ \textit{(see Figure 15)} \end{array}$	-	50 225 70	-	ns ns ns

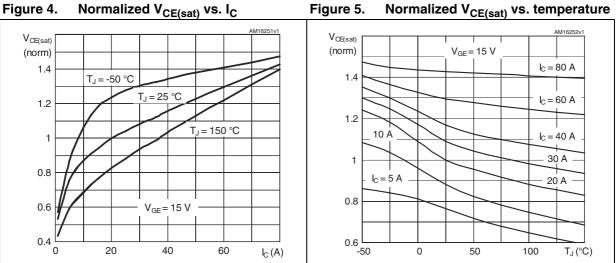
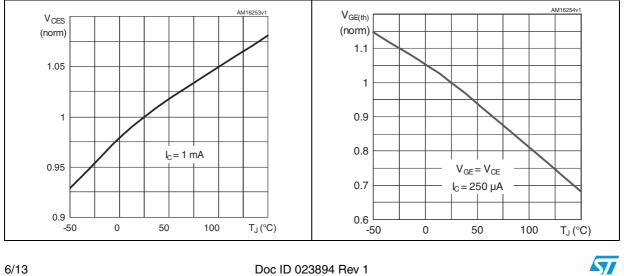
 Table 6.
 Switching on/off (inductive load)

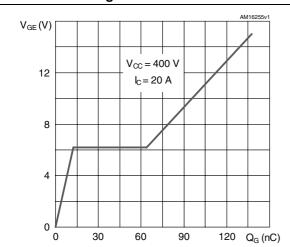

Table 7. Switching energy (inductive load)

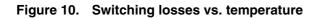
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} ⁽¹⁾	Turn-on switching losses	$V_{CC} = 400 \text{ V}, I_{C} = 20 \text{ A}$		290		μJ
E _{off}	Turn-off switching losses	$R_{G} = 10 \Omega$, $V_{GE} = 15 V$,	-	185		μJ
E _{ts}	Total switching losses	(see Figure 17)		475		μJ
E _{on} ⁽¹⁾	Turn-on switching losses	$V_{CC} = 400 \text{ V}, I_{C} = 20 \text{ A}$		420		μJ
E _{off}	Turn-off switching losses	R_{G} = 10 Ω, V_{GE} = 15 V,	-	350	530	μJ
E _{ts}	Total switching losses	T _J = 125 °C <i>(see Figure 17)</i>		770		μJ

1. Eon is the tun-on losses when a typical diode is used in the test circuit in *Figure 17*. If the IGBT is offered in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs and diode are at the same temperature (25 °C and 125 °C). Eon include diode recovery energy.

Electrical characteristics (curves) 2.1

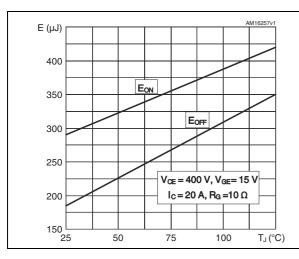
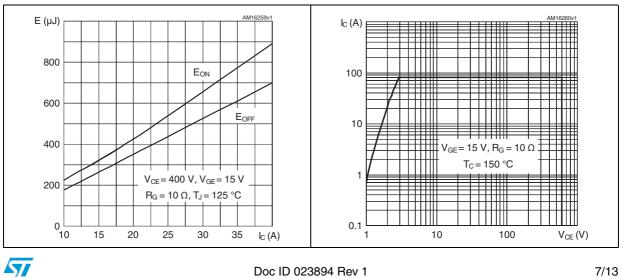
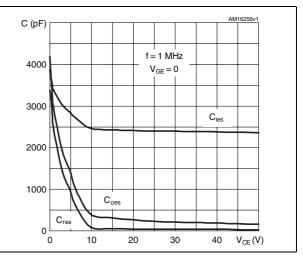




Figure 5.


Figure 6. Normalized breakdown voltage vs. Figure 7. Normalized gate threshold voltage vs. temperature temperature

Doc ID 023894 Rev 1

Figure 8. Gate charge vs. gate-emitter voltage

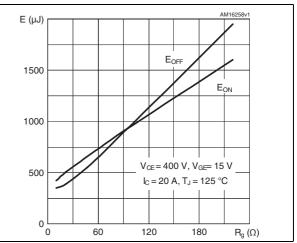

Figure 12. Switching losses vs. collector current

Figure 9. **Capacitance variations**

Switching losses vs. gate Figure 11. resistance

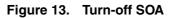
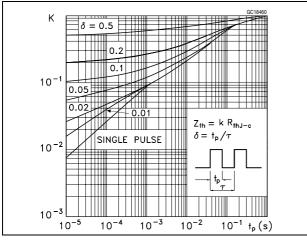
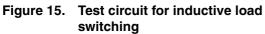
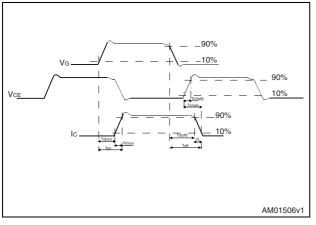



Figure 14. Thermal impedance



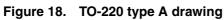

3 Test circuits

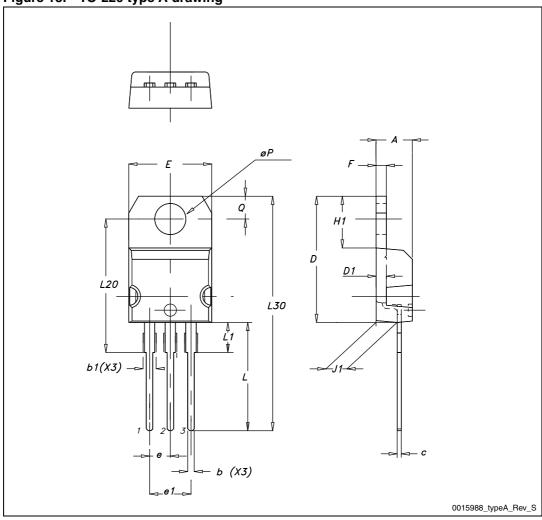
_____ cc δA ۰A С 12V 47ΚΩ E L=100µH 1KΩ G =100nF 3.3 1000 ုB E μ F μ F $V_{\rm CC}$ I_G=CONST C $V_i = 20V = V_{GMAX}$ 1KΩ С.U.Т. G | 👗 D.U.T. \sim 2200 #F V G __0 2.7KΩ Ε R _G ø 47K Ω 1KΩ . Pw AM01504v1 AM01505v1

Figure 16. Gate charge test circuit

Figure 17. Switching waveform

57


4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Dim		mm	
Dim. —	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
с	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
Øр	3.75		3.85
Q	2.65		2.95

Table 8. TO-220 type A mechanical data

5 Revision history

Table 9.Document revision history

Date	Revision	Changes
06-Nov-2012	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 023894 Rev 1

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STGP35HF60W