

STGF19NC60SD STGP19NC60SD

20 A, 600 V fast IGBT with Ultrafast diode

Features

- Very low on-voltage drop (V_{CE(sat)})
- Minimum power losses at 5 kHz in hard switching
- Optimized performance for medium operating frequencies.
- IGBT co-packaged with Ultrafast freewheeling diode

Application

Medium frequency motor drives

Description

This IGBT utilizes the advanced PowerMESH™ process resulting in an excellent trade-off between switching performance and low on-state behavior.

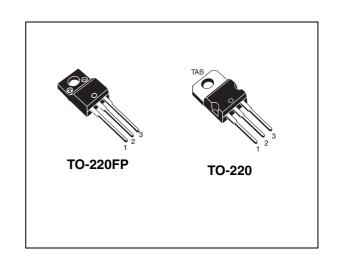


Figure 1. Internal schematic diagram

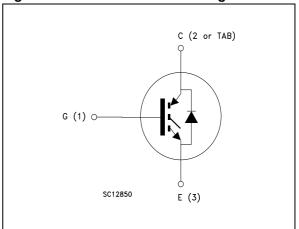


Table 1. Device summary

Order codes	Marking	Package	Packaging
STGF19NC60SD	GF19NC60SD	TO-220FP	Tube
STGP19NC60SD	GP19NC60SD	TO-220	Tube

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves)
	2.2 Frequency applications
3	Test circuits10
4	Package mechanical data1
5	Revision history

1 Electrical ratings

Table 2. Absolute maximum ratings

Comple	Davamatav	Va	lue	l lada
Symbol	Parameter	TO-220	TO-220FP	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	60	00	V
I _C ⁽¹⁾	Continuous collector current at T _C = 25°C	40	17	Α
I _C ⁽¹⁾	Continuous collector current at T _C = 100°C 20 11		11	Α
I _{CP} (2)	Pulsed collector current 80		0	Α
I _{CL} ⁽³⁾	Turn-off latching current 80		Α	
I _F	Diode RMS forward current at Tc = 25°C 20		0	Α
I _{FSM}	Surge non repetitive forward current t _p = 10ms sinusoidal		0	Α
V_{GE}	Gate-emitter voltage	±20		٧
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; Tc = 25 °C)	eads to external heat sink 2500		V
P _{TOT}	Total dissipation at $T_C = 25^{\circ}C$ 130 32		W	
T _j	Operating junction temperature - 55 to 1		o 150	°C

1. Calculated according to the iterative formula

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

- 2. Pulse width limited by maximum junction temperature and turn-off within RBSOA
- 3. Vclamp = 80% of V_{CES} , T_{j} =150 °C, R_{G} =10 Ω , V_{GE} =15 V

Table 3. Thermal data

Symbol Parameter		Val	Unit	
Symbol	raiailletei	TO-220	TO-220FP	Oilit
B	Thermal resistance junction-case IGBT	0.96	3.9	°C/W
R _{thj-c}	Thermal resistance junction-case diode	3	5.5	°C/W
R _{thj -a} Thermal resistance junction-ambient		62	5	°C/W

2 Electrical characteristics

 $(T_j = 25^{\circ}C \text{ unless otherwise specified})$

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1mA	600			V
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15V, I _C = 12A V _{GE} = 15V, I _C =12A,T _j =125°C		1.55 1.35	1.9	V V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	4.2		6.2	V
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 600 V V _{CE} = 600 V, T _j =125°C			150 1	μA mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ±20V, V _{CE} = 0			±100	nA
9 _{fs}	Forward transconductance	V _{CE} = 15V _, I _C = 12A		10		S

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{CE} = 25V, f = 1MHz,$ $V_{GE} = 0$	-	1190 135 28.5	-	pF pF pF
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	$V_{CE} = 480V$, $I_{C} = 12A$, $V_{GE} = 15V$, Figure 20	-	54.5 8.7 25.8	-	nC nC nC

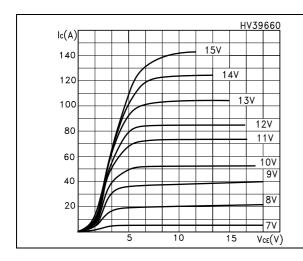
Table 6. Switching on/off (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt)on	Turn-on delay time Current rise time Turn-on current slope	V_{CC} = 480V, I_{C} = 12A R_{G} = 10 Ω , V_{GE} = 15V, Figure 21	-	17.5 6.2 1870	-	ns ns A/µs
t _{d(on)} t _r (di/dt)on	Turn-on delay time Current rise time Turn-on current slope	V_{CC} = 480V, I_{C} = 12A R_{G} = 10 Ω V_{GE} = 15V, T_{j} = 125°C Figure 21	-	17 6.5 1700	-	ns ns A/µs
t _{r(Voff)} t _{d(Voff)} t _f	Off voltage rise time Turn-off delay time Current fall time	V_{CC} = 480V, I_{C} = 12A R_{G} = 10 Ω , V_{GE} = 15V, Figure 21	-	90 175 215	-	ns ns ns
t _{r(Voff)} t _{d(Voff)} t _f	Off voltage rise time Turn-off delay time Current fall time	V_{CC} = 480V, I_{C} = 12A R_{G} = 10 Ω , V_{GE} = 15V, T_{j} = 125°C Figure 21	-	155 245 290	-	ns ns ns

Table 7. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} E _{off} ⁽¹⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	V_{CC} = 480 V, I_{C} = 12 A R_{G} = 10 Ω V _{GE} = 15 V, Figure 19	-	135 815 995	-	μJ μJ μJ
E _{on} E _{off} ⁽¹⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	V_{CC} = 480 V, I_{C} = 12 A R_{G} = 10 Ω , V_{GE} = 15 V, T_{j} = 125 °C Figure 19	-	200 1175 1375	1	μJ μJ μJ

^{1.} Turn-off losses include also the tail of the collector current


Table 8. Collector-emitter diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _F	Forward on-voltage	I _F = 12 A I _F = 12 A, T _j = 125 °C		2.3 2.0		V V
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_F = 12 \text{ A}, V_R = 40 \text{ V},$ $di/dt = 100 \text{ A}/\mu\text{s}$ Figure 22		31 29.5 1.9		ns nC A
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_F = 12 A, V_R =40 V, di/dt=100 A/ μ s, T_j = 125 °C Figure 22		48.5 70.5 3		ns nC A

2.1 Electrical characteristics (curves)

Figure 2. Output characteristics

Figure 3. Transfer characteristics

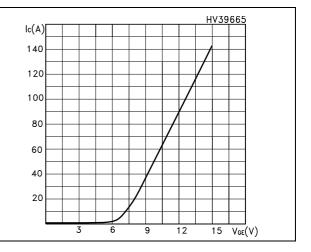
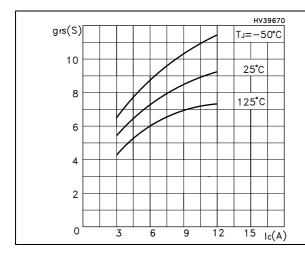



Figure 4. Transconductance

Figure 5. Collector-emitter on voltage vs temperature

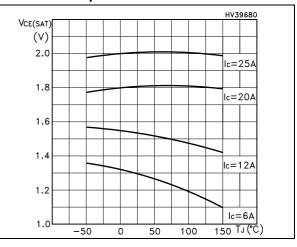
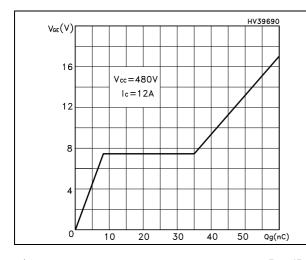
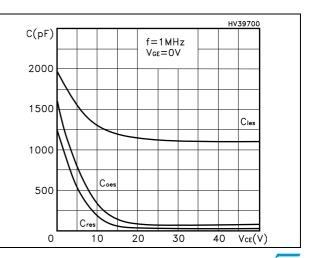




Figure 6. Gate charge vs gate-source voltage Figure 7. Capacitance variations

47/

6/15

Figure 8. Normalized gate threshold voltage Figure 9. Collector-emitter on voltage vs vs temperature collector current

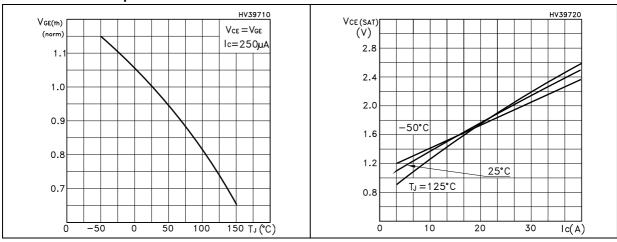


Figure 10. Normalized breakdown voltage vs Figure 11. Switching losses vs temperature temperature

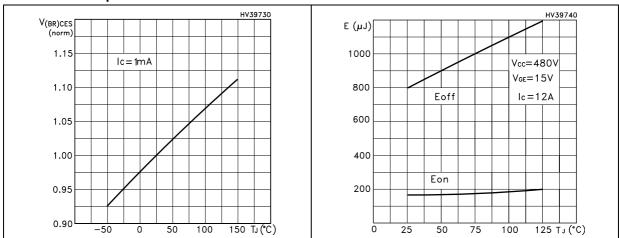


Figure 12. Switching losses vs gate resistance Figure 13. Switching losses vs collector current

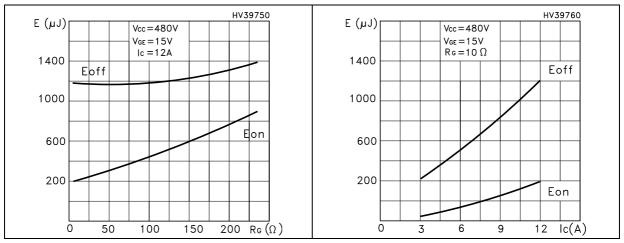


Figure 14. Turn-off SOA

Figure 15. Thermal impedance for TO-220

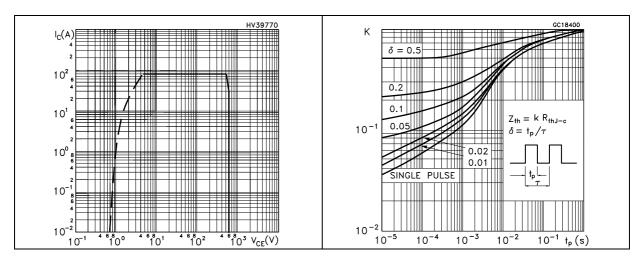


Figure 16. Thermal impedance for TO-220FP

Figure 17. Forward voltage drop versus forward current

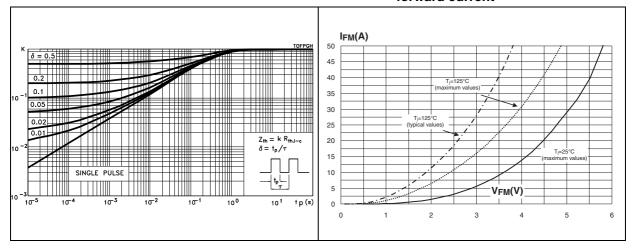
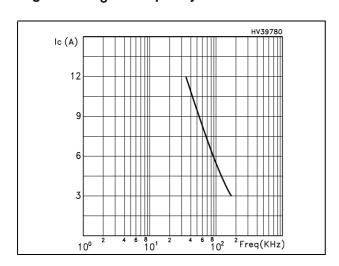



Figure 18. I_C vs. frequency

8/15 Doc ID 13689 Rev 4

2.2 Frequency applications

For a fast IGBT suitable for high frequency applications, the typical collector current vs. maximum operating frequency curve is reported. That frequency is defined as follows:

$$f_{MAX} = (P_D - P_C) / (E_{ON} + E_{OFF})$$

• The maximum power dissipation is limited by maximum junction to case thermal resistance:

Equation 1

$$P_D = \Delta T / R_{THJ-C}$$

considering
$$\Delta T = T_J - T_C = 125 \,^{\circ}\text{C} - 75 \,^{\circ}\text{C} = 50 \,^{\circ}\text{C}$$

The conduction losses are:

Equation 2

$$P_C = I_C * V_{CE(SAT)} * \delta$$

with 50% of duty cycle, V_{CESAT} typical value @125°C.

Power dissipation during ON & OFF commutations is due to the switching frequency:

Equation 3

$$P_{SW} = (E_{ON} + E_{OFF}) * freq.$$

Typical values @ 125° C for switching losses are used (test conditions: $V_{CE} = 480V$, $V_{GE} = 15V$, $R_{G} = 10$ Ohm). Furthermore, diode recovery energy is included in the E_{ON} (see *Note 1*), while the tail of the collector current is included in the E_{OFF} measurements.

3 Test circuits

Figure 19. Test circuit for inductive load switching

Figure 20. Gate charge test circuit

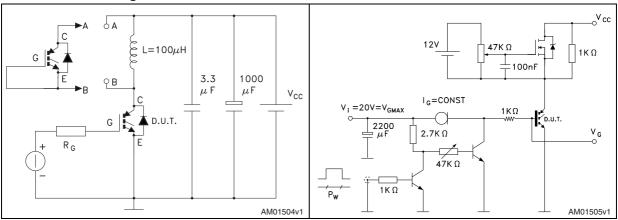
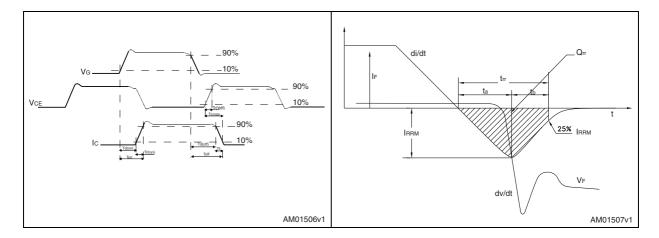
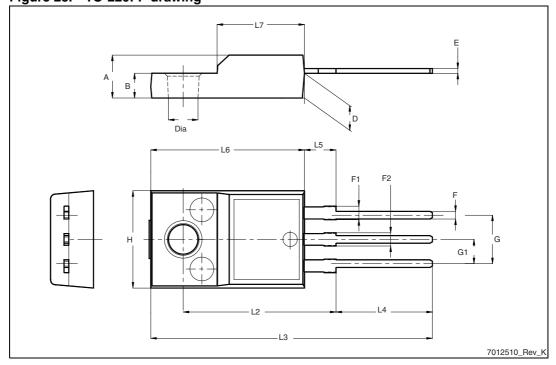



Figure 21. Switching waveform

Figure 22. Diode recovery time waveform

10/15 Doc ID 13689 Rev 4


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 9. TO-220FP mechanical data

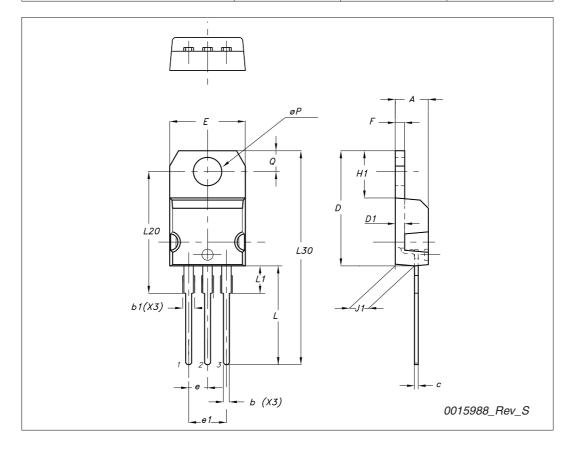

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Figure 23. TO-220FP drawing

TO-220 type A mechanical data

Dim		mm			
Dim	Min	Тур	Max		
A	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.70		
С	0.48		0.70		
D	15.25		15.75		
D1		1.27			
Е	10		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	1.23		1.32		
H1	6.20		6.60		
J1	2.40		2.72		
L	13		14		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
ØP	3.75		3.85		
Q	2.65		2.95		

5 Revision history

Table 10. Document revision history

Date	Revision	Changes	
02-Jul-2007	1	First release	
13-Aug-2007	2	From target to preliminary version	
18-Sep-2007	3	Added new section: Electrical characteristics (curves)	
05-Nov-2010	4	 Cover page has been updated Modified gate threshold voltage range on <i>Table 4: Static</i> Updated TO-220 mechanical data Added new package, mechanical data: TO-220FP 	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

477

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STGP19NC60SD