

Trench gate field-stop IGBT M series, 650 V, 15 A low loss

Datasheet - production data

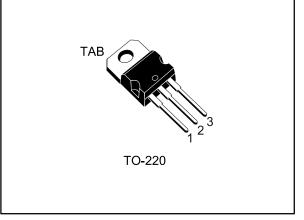
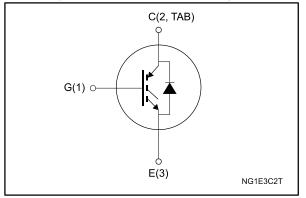



Figure 1: Internal schematic diagram

Features

- 6 µs of short-circuit withstand time
- V_{CE(sat)} = 1.55 V (typ.) @ I_C = 15 A
- Tight parameter distribution
- Safer paralleling
- Low thermal resistance
- Soft and very fast recovery antiparallel diode

Applications

- Motor control
- UPS
- PFC

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series of IGBTs, which represent an optimum compromise in performance to maximize the efficiency of inverter systems where low-loss and short-circuit capability are essential. Furthermore, a positive $V_{CE(sat)}$ temperature coefficient and tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGP15M65DF2	G15M65DF2	TO-220	Tube

This is information on a product in full production.

Contents

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	rcuits	
4	Packag	e information	
	4.1	TO-220 type A package information	14
5	Revisio	on history	

1 Electrical ratings

 Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
VCES	Collector-emitter voltage (V _{GE} = 0 V)	650	V
lc	Continuous collector current at $T_C = 25 \text{ °C}$		А
IC	Continuous collector current at T _c = 100 °C	15	A
ICP ⁽¹⁾	Pulsed collector current	60	А
V_{GE}	Gate-emitter voltage	±20	V
I_	Continuous forward current at T _C = 25 °C	30	А
IF	Continuous forward current at T _C = 100 °C	15	A
IFP ⁽¹⁾	I _{FP} ⁽¹⁾ Pulsed forward current		А
Ртот	P_{TOT} Total dissipation at $T_C = 25 \text{ °C}$		W
Tstg	Storage temperature range - 55 to		°C
TJ	Operating junction temperature	- 55 to 175	°C

Notes:

 $^{(1)}\mbox{Pulse}$ width limited by maximum junction temperature.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
RthJC	thJC Thermal resistance junction-case IGBT		
RthJC	Thermal resistance junction-case diode		°C/W
RthJA	R _{thJA} Thermal resistance junction-ambient		

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	$V_{GE} = 0 V, I_C = 2 mA$	650			V
		$V_{GE} = 15 \text{ V}, I_C = 15 \text{ A}$		1.55	2.0	
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, Ic = 15 A, T _J = 125 °C		1.9		V
		V _{GE} = 15 V, I _C = 15 A, T _J = 175 °C		2.1		
		I _F = 15 A		1.7		
VF	Forward on-voltage	I _F = 15 A, T _J = 125 °C		1.5		V
		I⊧ = 15 A, T」 = 175 °C		1.4		
$V_{\text{GE(th)}}$	Gate threshold voltage	$V_{CE}=V_{GE},\ I_C=500\ \mu A$	5	6	7	V
ICES	Collector cut-off current	$V_{GE} = 0 V, V_{CE} = 650 V$			25	μA
IGES	Gate-emitter leakage current	$V_{CE} = 0 \text{ V}, \text{ V}_{GE} = \pm 20 \text{ V}$			±250	μA

Table 4: Static characteristics

Table 5: Dynamic characteristics

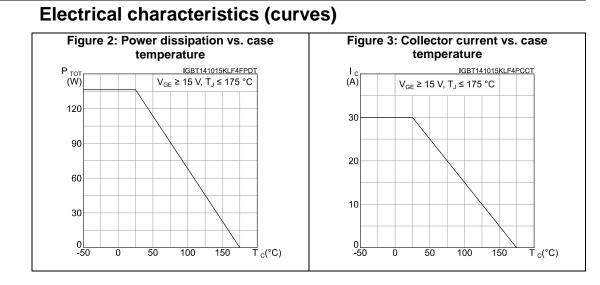
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	1250	-	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz,	-	80	-	рF
Cres	Reverse transfer capacitance	V _{GE} = 0 V	-	25	-	P1
Qg	Total gate charge	Vcc = 520 V, Ic = 15 A,	-	45	-	
Q _{ge}	Gate-emitter charge	V _{GE} = 15 V (see <i>Figure 30:</i> "	-	11	-	nC
Q _{gc}	Gate-collector charge	Gate charge test circuit")	-	15	-	

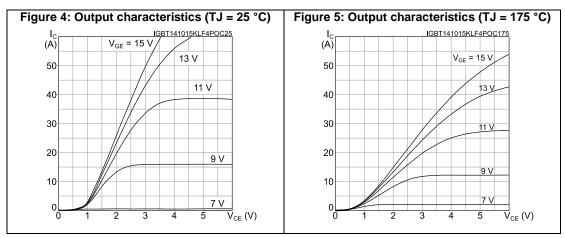
Electrical characteristics

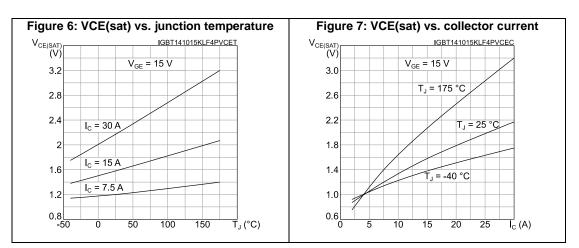
	Table 6: IGBT switching characteristics (inductive load)						
Symbol	Parameter	Parameter Test conditions		Тур.	Max.	Unit	
td(on)	Turn-on delay time			24	-	ns	
tr	Current rise time			7.8	-	ns	
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 15 A,		1570	-	A/µs	
t _{d(off)}	Turn-off-delay time	$V_{GE} = 400 \text{ V}, \text{ IC} = 10 \text{ A},$ $V_{GE} = 15 \text{ V}, \text{ R}_{G} = 12 \Omega$		93	-	ns	
t _f	Current fall time	(see Figure 29: "Test circuit		106	-	ns	
E _{on} ⁽¹⁾	Turn-on switching losses	for inductive load switching")		0.09	-	mJ	
E _{off} ⁽²⁾	Turn-off switching losses			0.45	-	mJ	
Ets	Total switching losses			0.54	-	mJ	
t _{d(on)}	Turn-on delay time			24.8	-	ns	
tr	Current rise time			9.2	-	ns	
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 15 A,		1300	-	A/µs	
t _{d(off)}	Turn-off-delay time	$V_{GE} = 15 \text{ V}, \text{ R}_{G} = 12 \Omega$		96	-	ns	
t _f	Current fall time	T _J = 175 °C (see Figure 29: " Test circuit for inductive load		169	-	ns	
Eon	Turn-on switching losses	switching")		0.22	-	mJ	
Eoff	Turn-off switching losses			0.61	-	mJ	
E _{ts}	Total switching losses			0.83	-	mJ	
t _{sc}	Short-circuit withstand time	$V_{CC} \le 400 \text{ V}, \text{ V}_{GE} = 15 \text{ V},$ T _{Jstart} = 150 °C	6		-	μs	

Notes:

 $\ensuremath{^{(1)}}\xspace$ Energy losses include reverse recovery of the diode.


 $^{(2)}\ensuremath{\mathsf{Turn}}\xspace$ of the tail of the collector current.


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time		-	142	-	ns
Qrr	Reverse recovery charge	I _F = 15 A, V _R = 400 V,	-	525	-	nC
Irrm	Reverse recovery current	V _{GE} = 15 V (see <i>Figure 29:</i> "	-	13.4	-	А
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b	Test circuit for inductive load switching') di/dt = 1000 A/µs	-	790	-	A/µs
Err	Reverse recovery energy		-	64	-	μJ
trr	Reverse recovery time		-	241	-	ns
Qrr	Reverse recovery charge	$I_F = 15 \text{ A}, V_R = 400 \text{ V},$	-	1690	-	nC
Irrm	Reverse recovery current	V _{GE} = 15 V T _J = 175 °C (see <i>Figure 29: " Test circuit</i>	-	20	-	А
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b	for inductive load switching") di/dt = 1000 A/µs	-	420	-	A/µs
Err	Reverse recovery energy		-	176	-	μJ


Table 7: Diode	switching	characteristics	(inductive load)
Table 7. Didue	Switching	characteristics	(maactive load)

2.1

DocID028489 Rev 2

30

20

10

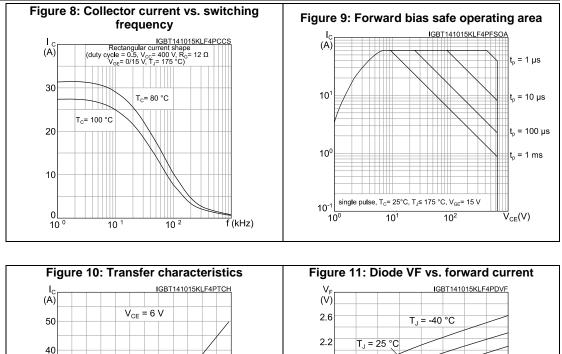
0

6

T_J = 25 °C

9

8


T_J = 175 °C

11

 $\overline{V}_{GE}(V)$

10

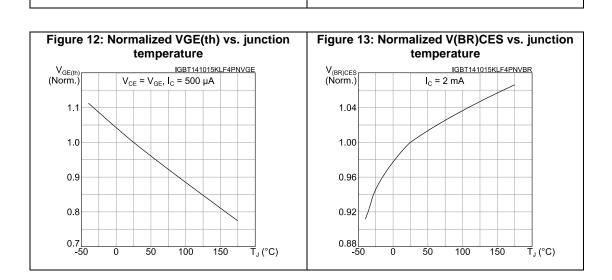
Electrical characteristics

1.8

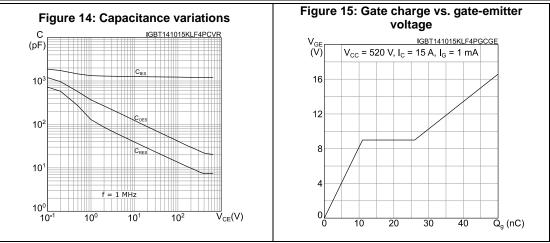
1.4

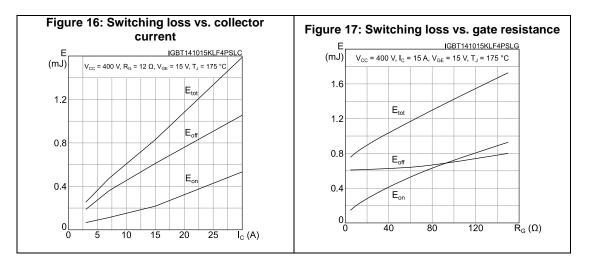
1.0

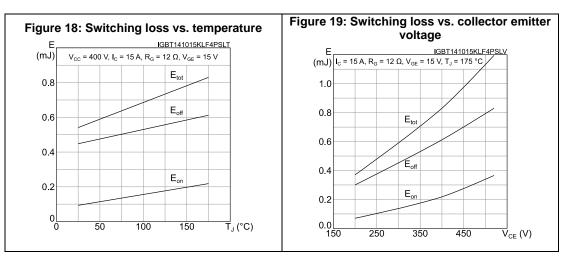
0.6 0.2


10

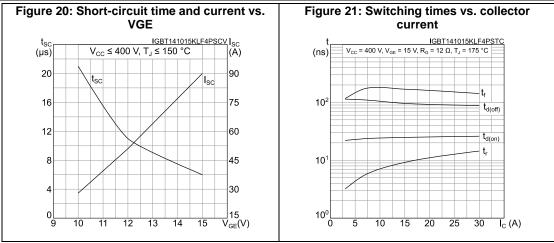
T_J = 175 °C

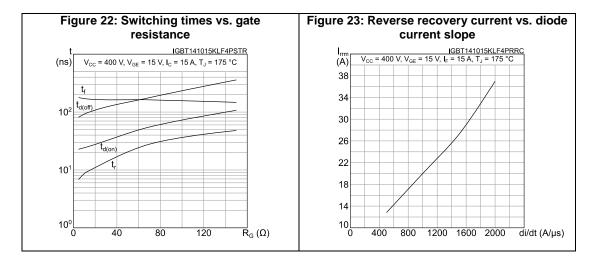

20

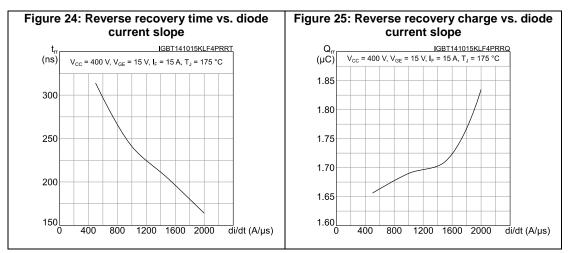

30


Ī_F (A)

57

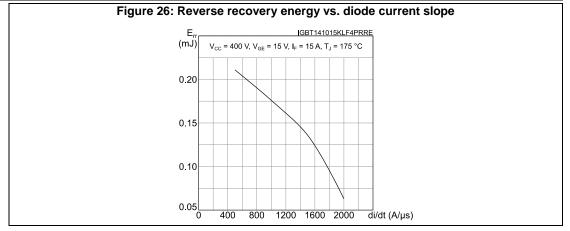


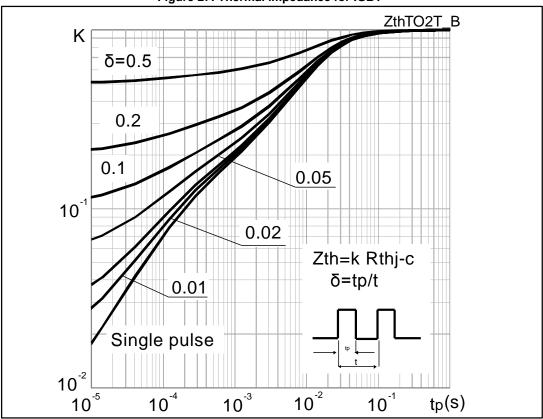




57

Electrical characteristics





DocID028489 Rev 2

Electrical characteristics

STGP15M65DF2

Figure 27: Thermal impedance for IGBT

Electrical characteristics

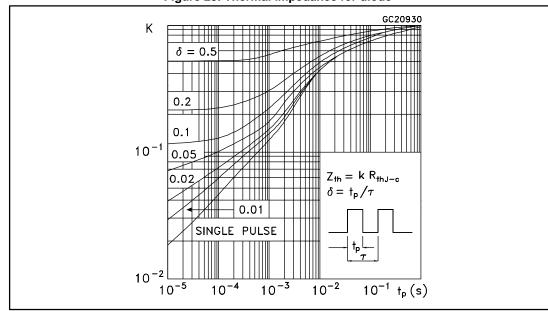
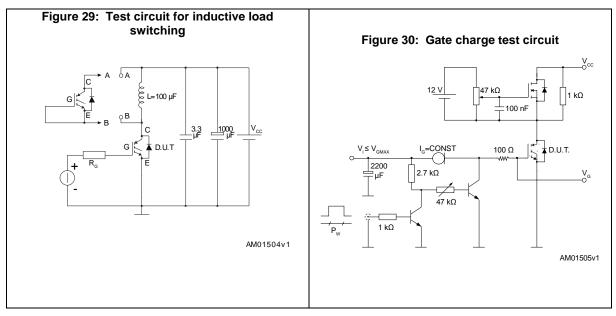
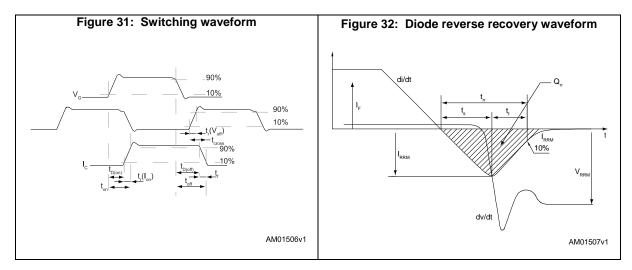
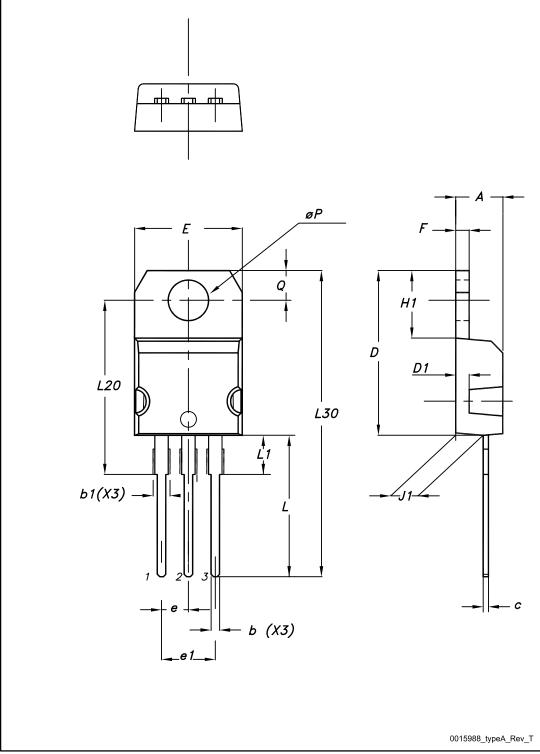




Figure 28: Thermal impedance for diode

3 Test circuits



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Package information

Table 8: TO-220 typ	e A mechanical data			
	mm			
Min.	Тур.	Max.		
4.40		4.60		
0.61		0.88		
1.14		1.70		
0.48		0.70		
15.25		15.75		
	1.27			
10		10.40		
2.40		2.70		
4.95		5.15		
1.23		1.32		
6.20		6.60		
2.40		2.72		
13		14		
3.50		3.93		
	16.40			
	28.90			
3.75		3.85		
2.65		2.95		
	Min. 4.40 0.61 1.14 0.48 15.25 10 2.40 4.95 1.23 6.20 2.40 13 3.50 3.75	Min. Typ. 4.40 0.61 0.61 1 1.14 0.48 15.25 1.27 10 1.27 10 1.27 10 2.40 4.95 1.23 6.20 1.23 3.50 16.40 3.75 28.90		

5 Revision history

 Table 9: Document revision history

Date	Revision	Changes		
14-Oct-2015	1	First release.		
13-Nov-2015	2	Document status promoted from preliminary to production data.		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STGP15M65DF2