

N-channel 600 V, 0.168 Ω typ., 18 A MDmesh™ M2 Power MOSFET in a TO-220FP ultra narrow leads package

Datasheet - production data

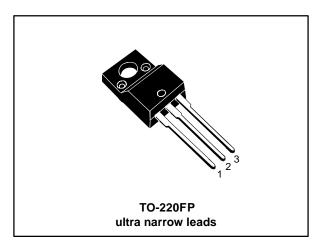
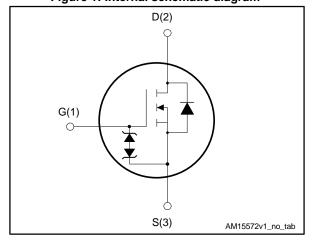



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	ID
STFU24N60M2	600 V	0.19 Ω	18 A

- Extremely low gate charge
- Lower R_{DS(on)} x area vs previous generation
- Low gate input resistance
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications
- LLC converters, resonant converters

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STFU24N60M2	24N60M2	TO-220FP ultra narrow leads	Tube

Contents STFU24N60M2

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuit	8
4	Packag	e information	9
	4.1	TO-220FP package information	9
5	Revisio	n history	11

STFU24N60M2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	18 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100 °C	12 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	72 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25 °C	30	W
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; T_C = 25 °C)	2500	V
dv/dt (3)	Peak diode recovery voltage slope	Peak diode recovery voltage slope 15	
dv/dt (4)	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	- 55 to	°C
Tj	Max. operating junction temperature	150	C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	4.2	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	C/VV

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	3.5	Α
Eas	Single pulse avalanche energy (starting $T_j = 25^{\circ}C$, $I_D = I_{AR}$; $V_{DD} = 50 \text{ V}$)	180	mJ

⁽¹⁾Limited by maximum junction temperature.

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}}I_{SD} \leq$ 18 A, di/dt \leq 400 A/µs; VDSpeak < V(BR)DSS, VDD = 400 V.

 $^{^{(4)}}V_{DS} \le 480 \text{ V}.$

Electrical characteristics STFU24N60M2

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 5: On /off states

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	600			V
1	Zero gate voltage	V _{DS} = 600 V			1	μΑ
IDSS	drain current (V _{GS} = 0)	V _{DS} = 600 V, T _C = 125 °C			100	μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 9 A		0.168	0.19	Ω

Table 6: Dynamic

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1060	1	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	-	55	ı	pF
Crss	Reverse transfer capacitance	Ves = 0 V	-	2.2	-	pF
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	-	258	-	pF
Rg	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0$	-	7	-	Ω
Q_g	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 18 \text{ A},$	-	29	ı	nC
Qgs	Gate-source charge	V _{GS} = 10 V (see Figure 15: "Test circuit for gate charge	-	6	-	nC
Q _{gd}	Gate-drain charge	behavior")	-	12	-	nC

Notes:

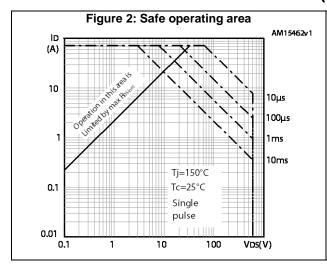
Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 9 \text{ A},$	ı	14	ı	ns
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit for	-	9	-	ns
t _{d(off)}	Turn-off delay time	resistive load switching times" and Figure 19: "Switching time waveform")	-	60	-	ns
t _f	Fall time		ı	15	1	ns

 $^{^{(1)}}C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 8: Source drain diode

Symbol	Parameter	Parameter Test conditions		Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		18	Α
I _{SDM} ⁽¹⁾⁽²⁾	Source-drain current (pulsed)		-		72	Α
V _{SD} ⁽³⁾	Forward on voltage	I _{SD} = 18 A, V _{GS} = 0 V	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 18 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	332		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load	-	4		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	24		Α
t _{rr}	Reverse recovery time	$I_{SD} = 18 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	450		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}, (see Figure 16: "Test circuit for$	-	5.5		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	25		А


Notes:

 $[\]ensuremath{^{(1)}}\xspace$ The value is rated according to $R_{thj\text{-case}}$ and limited by package.

 $^{^{(2)}}$ Pulse width limited by safe operating area.

 $^{^{(3)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

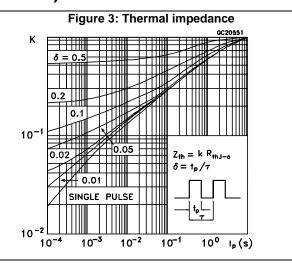
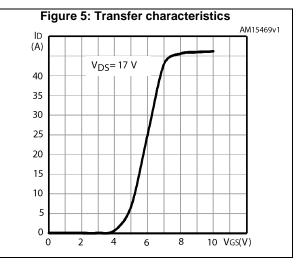
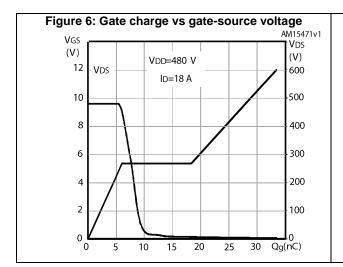
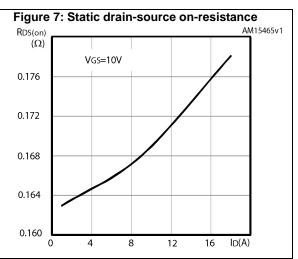





Figure 4: Output characteristics AM15470v1 V_{GS}= 8, 9, 10 V (A) $V_{GS} = 7V$ 40 35 30 25 V_{GS}= 6V 20 15 10 V_{GS}= 5 V 5 V_{GS}= 4V 0 5 10 15 20 VDS(V)

STFU24N60M2 Electrical characteristics

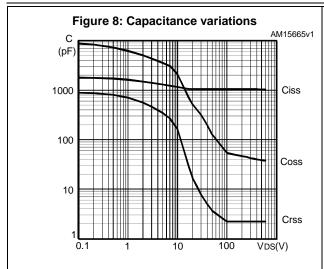


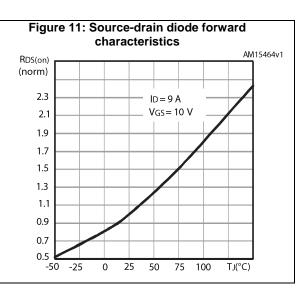
Figure 9: Normalized gate threshold voltage vs. temperature Eoss (JJ) 8 7 6 4 3 2 300 400 500 600 100 200 $V_{DS}(V)$

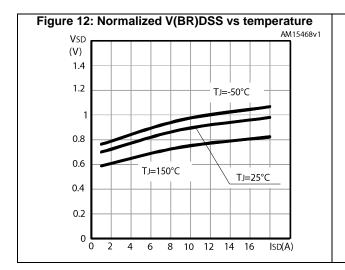
Figure 10: Normalized on-resistance vs temperature

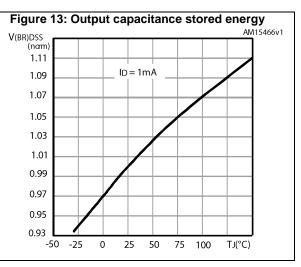
VGS(th)
(norm)

1.1

1.0


0.9


0.8


0.7

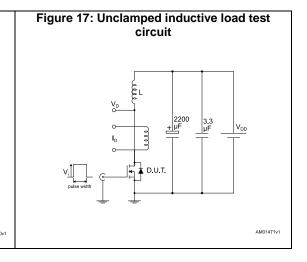
0.6

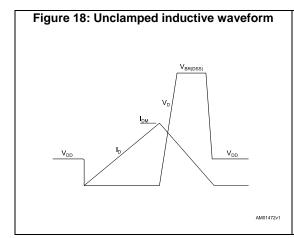
-50 -25 0 25 50 75 100 TJ(°C)

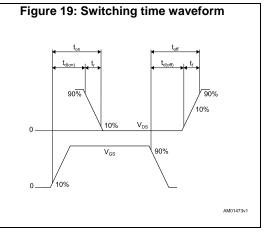
Test circuit STFU24N60M2

3 Test circuit

Figure 14: Test circuit for resistive load switching times


Figure 15: Test circuit for gate charge behavior


12 V 47 KQ 100 nF D.U.T.


VGS 1 KQ 100 NF D.U.T.

AM01469v1

Figure 16: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP package information

F1(x3)D G1 Ε 8576148_1

Figure 20: TO-220FP ultra narrow leads package outline

Table 9: TO-220FP ultra narrow leads mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
В	2.50		2.70
D	2.50		2.75
Е	0.45		0.60
F	0.65		0.75
F1	-		0.90
G	4.95		5.20
G1	2.40	2.54	2.70
Н	10.00		10.40
L2	15.10		15.90
L3	28.50		30.50
L4	10.20		11.00
L5	2.50		3.10
L6	15.60		16.40
L7	9.00		9.30
L8	3.20		3.60
L9	-		1.30
Dia.	3.00		3.20

STFU24N60M2 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes	
12-Mar-2015	1	Initial release	
08-Sepr-2015	2	Datasheet status promoted from preliminary to production data	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STFU24N60M2