

### STD105N10F7AG

# Automotive-grade N-channel 100 V, 6.8 mΩ typ., 80 A, STripFET™ F7 Power MOSFET in a DPAK package

Datasheet - production data

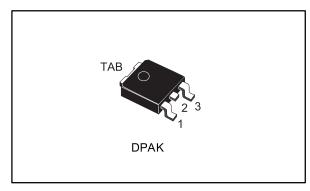
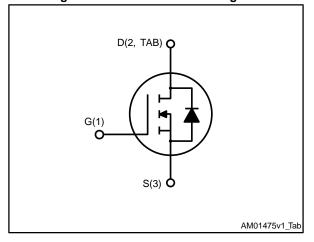




Figure 1: Internal schematic diagram



### **Features**

| Order code    | V <sub>DS</sub> | V <sub>DS</sub> R <sub>DS(on)</sub> max. |      | Ртот  |
|---------------|-----------------|------------------------------------------|------|-------|
| STD105N10F7AG | 100 V           | 8 mΩ                                     | 80 A | 120 W |

- Designed for automotive applications and AEC-Q101 qualified
- Among the lowest R<sub>DS(on)</sub> on the market
- Excellent FoM (figure of merit)
- Low C<sub>rss</sub>/C<sub>iss</sub> ratio for EMI immunity
- High avalanche ruggedness

### **Applications**

Switching applications

### **Description**

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

**Table 1: Device summary** 

| Order code    | Marking  | Package | Packing       |
|---------------|----------|---------|---------------|
| STD105N10F7AG | 105N10F7 | DPAK    | Tape and reel |

Contents STD105N10F7AG

### **Contents**

| 1 | Electrical ratings3 |                                           |    |
|---|---------------------|-------------------------------------------|----|
| 2 | Electric            | al characteristics                        | 4  |
|   | 2.1                 | Electrical characteristics (curves)       | 6  |
| 3 | Test cir            | ·cuits                                    | 8  |
| 4 | Packag              | e information                             | 9  |
|   | 4.1                 | DPAK (TO-252) type A2 package information | 10 |
| 5 | Revisio             | n history                                 | 13 |

STD105N10F7AG Electrical ratings

# 1 Electrical ratings

Table 2: Absolute maximum ratings

| Symbol                         | Parameter                                             | Value         | Unit |  |
|--------------------------------|-------------------------------------------------------|---------------|------|--|
| V <sub>DS</sub>                | Drain-source voltage                                  | 100           | V    |  |
| V <sub>GS</sub>                | Gate-source voltage                                   | ± 20          | V    |  |
| I <sub>D</sub>                 | Drain current (continuous) at T <sub>C</sub> = 25 °C  | 80            | Α    |  |
| I <sub>D</sub>                 | Drain current (continuous) at T <sub>C</sub> = 100 °C | 62            | Α    |  |
| I <sub>DM</sub> <sup>(1)</sup> | Drain current (pulsed) 320                            |               |      |  |
| Ртот                           | Total dissipation at T <sub>C</sub> = 25 °C 120       |               |      |  |
| T <sub>stg</sub>               | Storage temperature range                             |               | °C   |  |
| TJ                             | Operation junction temperature range                  | -55 to 175 °C |      |  |

#### Notes:

Table 3: Thermal data

| Symbol                              | Parameter                          | Value | Unit |
|-------------------------------------|------------------------------------|-------|------|
| R <sub>thj-case</sub>               | Thermal resistance junction-case   |       | °C/W |
| R <sub>thj-pcb</sub> <sup>(1)</sup> | Thermal resistance junction-pcb 50 |       |      |

#### Notes:

**Table 4: Avalanche characteristics** 

|   | Symbol | Parameter                                                                                                                                                       | Value | Unit |
|---|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| I | Eas    | Single pulse avalanche energy $T_J = 25  ^{\circ}\text{C}$ , $L = 3.5  \text{mH}$ , $I_{AS} = 15  \text{A}$ , $V_{DD} = 50  \text{V}$ , $V_{GS} = 10  \text{V}$ | 400   | mJ   |

<sup>&</sup>lt;sup>(1)</sup>Pulse width limited by safe operating area.

<sup>&</sup>lt;sup>(1)</sup>When mounted on FR-4 board of 1 inch², 2oz Cu.

Electrical characteristics STD105N10F7AG

### 2 Electrical characteristics

(T<sub>CASE</sub> = 25 °C unless otherwise specified)

Table 5: On/Off states

| Symbol                             | Parameter                                            | Test conditions                                                     | Min. | Тур. | Max.  | Unit |
|------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|------|------|-------|------|
| V <sub>(BR)DSS</sub>               | Drain-source breakdown voltage (V <sub>GS</sub> = 0) | I <sub>D</sub> = 250 μA                                             | 100  |      |       | V    |
|                                    | Zero gate voltage                                    | V <sub>DS</sub> = 100 V                                             |      |      | 1     | μΑ   |
| drain current (V <sub>GS</sub> = 0 |                                                      | $V_{DS} = 100 \text{ V}, T_{C} = 125  {}^{\circ}\text{C}  {}^{(1)}$ |      |      | 100   | μΑ   |
| Igss                               | Gate body leakage current (V <sub>DS</sub> = 0)      | V <sub>GS</sub> = ± 20 V                                            |      |      | ± 100 | nA   |
| V <sub>GS(th)</sub>                | Gate threshold voltage                               | $V_{DS} = V_{GS}$ , $I_D = 250 \mu A$                               | 2.5  |      | 4.5   | V    |
| R <sub>DS(on)</sub>                | Static drain-source on-resistance                    | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 40 A                       |      | 6.8  | 8     | mΩ   |

#### Notes:

Table 6: Dynamic

| Symbol   | Parameter                    | Test conditions                                          | Min. | Тур. | Max. | Unit |
|----------|------------------------------|----------------------------------------------------------|------|------|------|------|
| Ciss     | Input capacitance            |                                                          | -    | 4369 | •    | pF   |
| Coss     | Output capacitance           | $V_{DS} = 50 \text{ V}, f = 1 \text{ MHz},$              | -    | 823  | •    | pF   |
| Crss     | Reverse transfer capacitance | V <sub>G</sub> S = 0 V                                   |      | 36   | -    | pF   |
| Qg       | Total gate charge            | $V_{DD} = 50 \text{ V}, I_D = 80 \text{ A},$             | -    | 61   | •    | nC   |
| $Q_{gs}$ | Gate-source charge           | V <sub>GS</sub> = 10 V                                   | -    | 26   | ı    | nC   |
| $Q_{gd}$ | Gate-drain charge            | (see Figure 14: "Test circuit for gate charge behavior") | -    | 13   | ı    | nC   |

**Table 7: Switching times** 

| Symbol              | Parameter           | Test conditions                                                   | Min. | Тур. | Max. | Unit |
|---------------------|---------------------|-------------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>  | Turn-on delay time  | $V_{DD} = 50 \text{ V}, I_D = 40 \text{ A},$                      | •    | 27   | -    | ns   |
| tr                  | Rise time           | $R_G = 4.7 \Omega$ , $V_{GS} = 10 V$                              |      | 40   | -    | ns   |
| t <sub>d(off)</sub> | Turn-off delay time | (see Figure 13: "Test circuit for resistive load switching times" | -    | 46   | -    | ns   |
| t <sub>f</sub>      | Fall time           | and Figure 18: "Switching time waveform")                         | -    | 15   | -    | ns   |

<sup>&</sup>lt;sup>(1)</sup>Defined by design, not subject to production test.

Table 8: Source-drain diode

| Symbol                          | Parameter                                                                                                                          | Test conditions          | Min. | Тур. | Max. | Unit |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current                                                                                                               |                          | ı    |      | 80   | Α    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed)                                                                                                      |                          | ı    |      | 320  | Α    |
| V <sub>SD</sub> <sup>(2)</sup>  | Forward on voltage I <sub>SD</sub> = 80 A, V <sub>GS</sub> = 0 V                                                                   |                          | -    |      | 1.2  | V    |
| t <sub>rr</sub>                 | Reverse recovery time                                                                                                              |                          | ı    | 77   |      | ns   |
| Qrr                             | Reverse recovery charge $I_{SD} = 80 \text{ A, di/dt} = 100 \text{ A/µs}$<br>$V_{DD} = 80 \text{ V, T}_{I} = 150 ^{\circ}\text{C}$ |                          | -    | 146  |      | nC   |
| I <sub>RRM</sub>                | Reverse recovery current                                                                                                           | - VDD - 00 V, 1j - 100 O | -    | 4    |      | Α    |

#### Notes:

 $<sup>\</sup>ensuremath{^{(1)}}\mbox{Pulse}$  width limited by safe operating area.

 $<sup>^{(2)}\</sup>text{Pulsed:}$  pulse duration = 300  $\mu\text{s,}$  duty cycle 1.5 %.

## 2.1 Electrical characteristics (curves)

Figure 3: Thermal impedance

K  $\delta = 0.5$ 0.2

0.1

10 -1

0.05  $Z_{\text{th}} = k R_{\text{th}, J-c}$   $\delta = f_{\text{p}}/T$ SINGLE PULSE

10 -2

10 -2

10 -1

10 -2

10 -1

10 -2

10 -1

10 -1

10 -1

10 -2

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

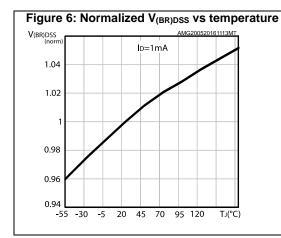
10 -1

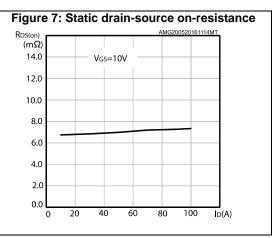
10 -1

10 -1

10 -1

10 -1


10 -1


10 -1

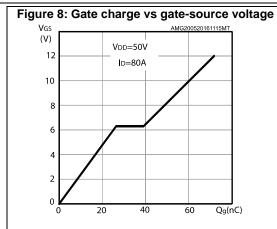

10 -1

Figure 4: Output characteristics

ID
(A)
300
250
8V
200
150
7V
100
50
0
1 2 3 4 VDS(V)









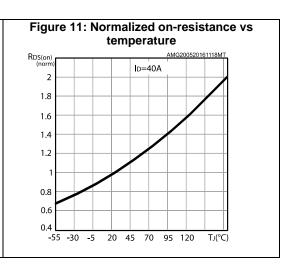
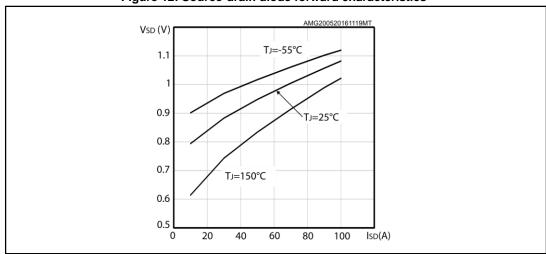
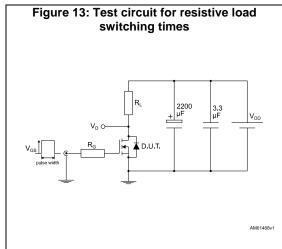
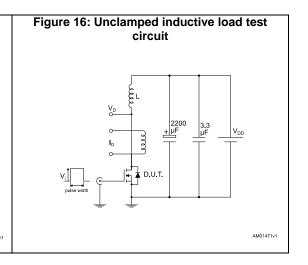



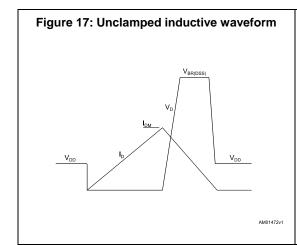

Figure 12: Source-drain diode forward characteristics

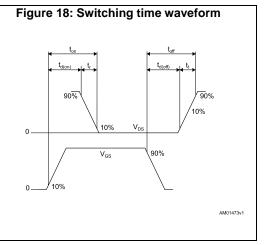


Test circuits STD105N10F7AG

### 3 Test circuits



Figure 14: Test circuit for gate charge behavior


12 V 47 KΩ 100 Ω D.U.T.

12200 VG 47 KΩ VG AM01469v1

Figure 15: Test circuit for inductive load switching and diode recovery times







## 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.



## 4.1 DPAK (TO-252) type A2 package information

Figure 19: DPAK (TO-252) type A2 package outline

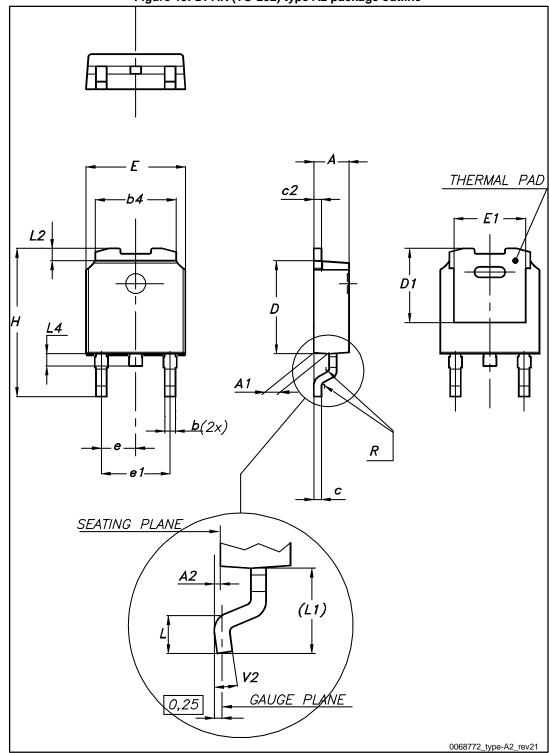
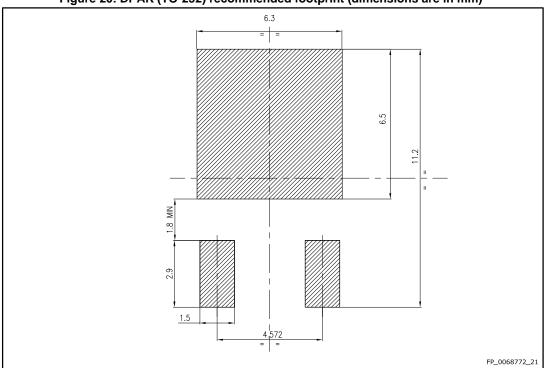




Table 9: DPAK (TO-252) type A2 mechanical data

| Dim  | 145000000000000000000000000000000000000 | mm   |       |
|------|-----------------------------------------|------|-------|
| Dim. | Min.                                    | Тур. | Max.  |
| Α    | 2.20                                    |      | 2.40  |
| A1   | 0.90                                    |      | 1.10  |
| A2   | 0.03                                    |      | 0.23  |
| b    | 0.64                                    |      | 0.90  |
| b4   | 5.20                                    |      | 5.40  |
| С    | 0.45                                    |      | 0.60  |
| c2   | 0.48                                    |      | 0.60  |
| D    | 6.00                                    |      | 6.20  |
| D1   | 4.95                                    | 5.10 | 5.25  |
| E    | 6.40                                    |      | 6.60  |
| E1   | 5.10                                    | 5.20 | 5.30  |
| е    | 2.16                                    | 2.28 | 2.40  |
| e1   | 4.40                                    |      | 4.60  |
| Н    | 9.35                                    |      | 10.10 |
| L    | 1.00                                    |      | 1.50  |
| L1   | 2.60                                    | 2.80 | 3.00  |
| L2   | 0.65                                    | 0.80 | 0.95  |
| L4   | 0.60                                    |      | 1.00  |
| R    |                                         | 0.20 |       |
| V2   | 0°                                      |      | 8°    |

Package information STD105N10F7AG





STD105N10F7AG Revision history

# 5 Revision history

Table 10: Document revision history

| Date        | Revision | Changes                                                                                                 |
|-------------|----------|---------------------------------------------------------------------------------------------------------|
| 23-Oct-2014 | 1        | First release.                                                                                          |
| 30-Oct-2014 | 2        | Document status promoted from preliminary to production data.                                           |
| 20-May-2016 | 3        | Updated Section 4.1: "DPAK (TO-252) type A2 package information".  Minor text changes.                  |
| 03-Jun-2016 | 4        | Updated title and features in cover page. Updated <i>Table 5: "On/Off states"</i> . Minor text changes. |

#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved



# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STD105N10F7AG