STB9NK80Z

Automotive-grade N-channel 800 V, 1.5 Ω typ., 5.2 A Zener-protected SuperMESH™ Power MOSFETs in D²PAK package

Datasheet - production data

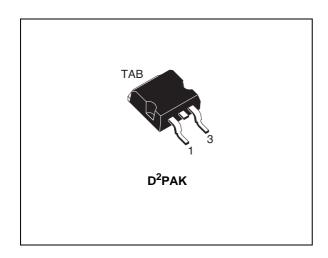
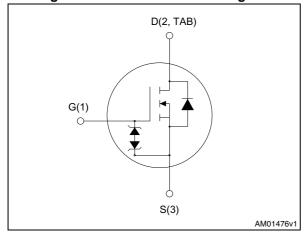



Figure 1. Internal schematic diagram

Features

Туре	V _{DS} (@Tjmax)	R _{DS(on)} max.	I _D
STB9NK80Z	800V	1.8Ω	5.2A

- Designed for automotive applications and AEC-Q101 qualified
- Extremely high dv/dt capability
- 100% avalanche tested
- Gate charge minimized
- Zener-protected
- Very low intrinsic capacitances

Applications

· Switching application

Description

This device is an N-channel Zener-protected Power MOSFET developed using STMicroelectronics' SuperMESH™ technology, achieved through optimization of ST's well established strip-based PowerMESH™ layout. In addition to a significant reduction in onresistance, this device is designed to ensure a high level of dv/dt capability for the most demanding applications.

Table 1. Device summary

Order codes	Marking	Package	Packaging
STB9NK80Z	B9NK80Z	D²PAK	Tape and reel

Contents STB9NK80Z

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	. 4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data	10
5	Packaging mechanical data	12
6	Pavision history	11

STB9NK80Z Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	800	V
V _{GS}	Gate- source voltage	± 30	V
I _D	Drain current (continuous) at T _C = 25 °C	5.2	Α
I _D	I _D Drain current (continuous) at T _C = 100 °C		Α
I _{DM} ⁽¹⁾	I _{DM} ⁽¹⁾ Drain current (pulsed)		Α
P _{TOT}	P _{TOT} Total dissipation at T _C = 25°C		W
	Derating factor	1	W/°C
ESD	Gate-source human body model (C = 100 pF, R = 1.5 k Ω)	4	kV
dv/dt (2)	dv/dt ⁽²⁾ Peak diode recovery voltage slope		V/ns
T _j T _{stg}	,		°C

^{1.} Pulse width limited by junction temperature.

Table 3. Thermal data

Symbol Parameter		Value	Unit
R _{thj-case}	R _{thj-case} Thermal resistance junction-case max		°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj Max)	5.2	Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	210	mJ

^{2.} $I_{SD} \leq$ 5.2 A, di/dt \leq 200 A/ μ s, $V_{DD} \leq$ $V_{(BR)DSS}$

Electrical characteristics STB9NK80Z

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Parameter Test conditions		Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown voltage	I _D =1 mA, V _{GS} = 0	800			V
I _{DSS}	Zero gate voltage Drain Current (V _{GS} = 0)	V _{DS} = 800 V V _{DS} = 800 V, T _C = 125 °C			1 50	μA μA
I _{GSS}	Gate-body leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 100 \mu\text{A}$	3	3.75	4.5	٧
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 2.6 A		1.5	1.8	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} = 15 \text{ V}, I_D = 2.6 \text{ A}$	-	5	-	S
C _{iss}	Input capacitance		-	1138	-	pF
C _{oss}	Output capacitance	V _{DS} = 25 V, f = 1 MHz,	-	122	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	25	-	pF
C _{oss eq.} (2)	Equivalent output capacitance	V _{DS} =0 , V _{DS} = 0 to 640 V	-	50	-	pF
t _{d(on)}	Turn-on delay time		-	20	-	ns
t _r	Rise time	$V_{DD} = 400 \text{ V}, I_D = 2.6 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	12	-	ns
t _{r(off)}	Turn-off delay time	(see <i>Figure 15</i>)	-	45	-	ns
t _r	Fall time		-	22	-	ns
Qg	Total gate charge	V _{DD} = 640 V, I _D = 2.6 A,	-	40	-	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	-	7	-	nC
Q _{gd}	Gate-drain charge	(see Figure 16)	-	2.1	-	nC
t _{r(Voff)}	Off-voltage rise time	V _{DD} = 640 V, I _D = 2.6 A, R _G = 4.7 Ω, V _{GS} = 10 V	-	12	-	ns
t _r	Fall time		ı	10	-	ns
t _c	Cross-over time	(see Figure 15)	-	20	-	ns

^{1.} Pulsed: pulse duration=300 μ s, duty cycle 1.5%

4/15 DocID024491 Rev 2

^{2.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 11 Coulds didn't dious							
Symbol	Parameter	Test conditions M		Тур.	Max.	Unit	
I _{SD}	Source-drain current Source-drain current (pulsed)		-		5.2 20.8	A A	
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 5.2 A, V _{GS} = 0	-		1.6	٧	
t _{rr}	Reverse recovery time	$I_{SD} = 5.2 \text{ A}, \text{ di/dt} = 100$	-	530		ns	
Q _{rr}	Reverse recovery charge	A/μs V _{DD} = 50 V, Tj = 150°C	-	3.31		μC	
I _{RRM}	Reverse recovery current	(see <i>Figure 20</i>)	-	12.5		Α	

Table 7. Source drain diode

Table 8. Gate-source zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR) GSO}	Gate-source breakdown voltage	$I_D = 0$ $I_{GS} = \pm 1 \text{mA}$	30			V

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

^{1.} Pulsed: pulse duration=300 μ s, duty cycle 1.5%

^{2.} Pulse width limited by safe operating area

Electrical characteristics STB9NK80Z

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

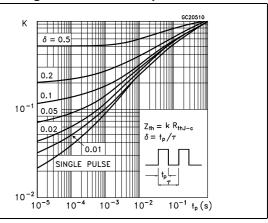


Figure 4. Output characteristics

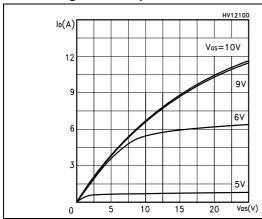


Figure 5. Transfer characteristics

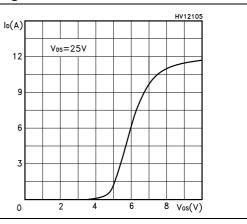


Figure 6. Transconductance

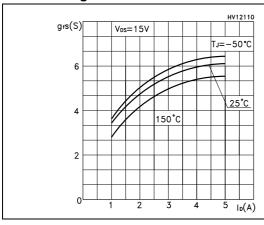


Figure 7. Static drain-source on-resistance

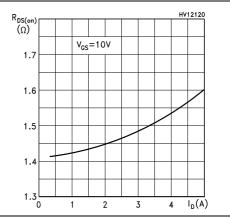


Figure 8. Gate charge vs gate-source voltage

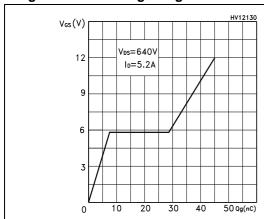


Figure 9. Capacitance variations

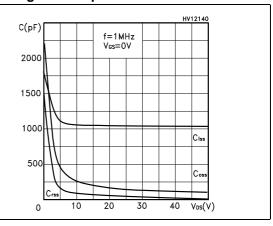


Figure 10. Normalized gate threshold voltage vs temperature

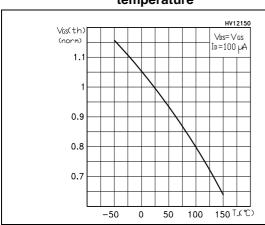


Figure 11. Normalized on-resistance vs temperature

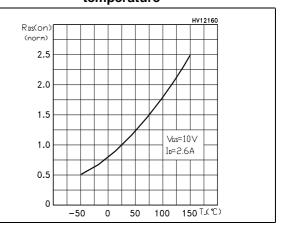
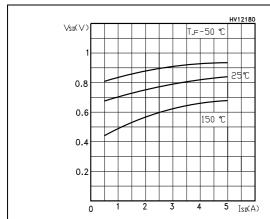
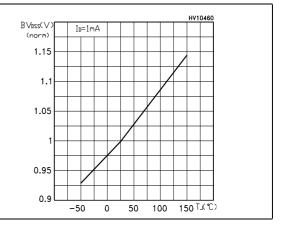
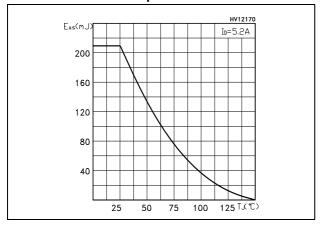




Figure 12. Source-drain diode forward characteristic


Figure 13. Normalized BVDSS vs temperature

Electrical characteristics STB9NK80Z

Figure 14. Maximum avalanche energy vs temperature

STB9NK80Z Test circuits

3 Test circuits

Figure 15. Switching times test circuit for resistive load

Figure 16. Gate charge test circuit

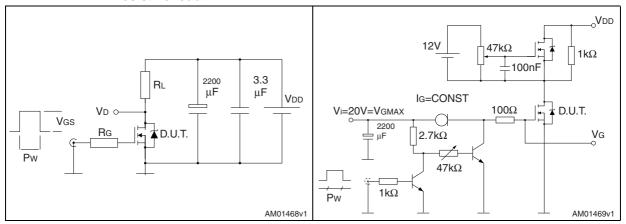


Figure 17. Test circuit for inductive load switching and diode recovery times

Figure 18. Unclamped inductive load test circuit

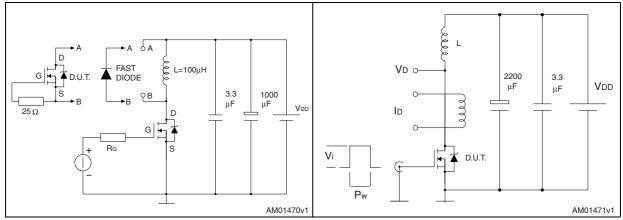



Figure 19. Unclamped inductive waveform

Figure 20. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

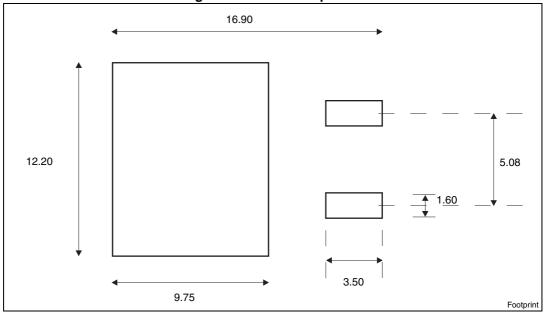
Table 9. D²PAK (TO-263) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
E	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

SEATING PLANE

COPLANARITY AT

R


GAUGE PLANE

V2

0079457_T

Figure 21. D²PAK (TO-263) drawing

a. All dimension are in millimeters

5 Packaging mechanical data

Table 10. D²PAK (TO-263) tape and reel mechanical data

	Таре			Reel		
Dim	m	ım	Dim	mm		
Dim.	Min.	Max.	Dim.	Min.	Max.	
A0	10.5	10.7	Α		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
Е	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1		Base qty	1000	
P2	1.9	2.1		Bulk qty	1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				

Figure 23. Tape

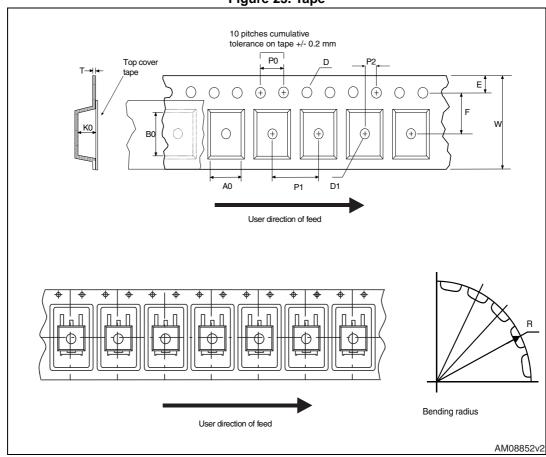
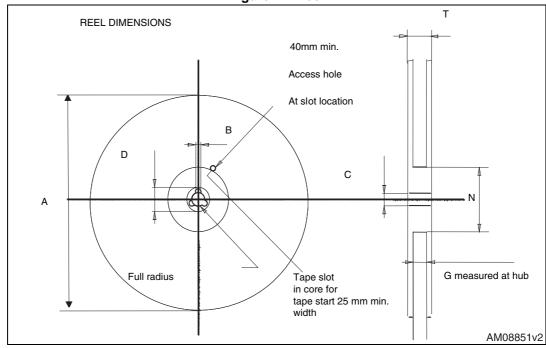



Figure 24. Reel

Revision history STB9NK80Z

6 Revision history

Table 11. Document revision history

Date	Revision	Changes
05-Jun-2013	1	First issue.
12-Jul-2013	2	Document status promoted from preliminary to production data.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STB9NK80Z