

advanced

400 V

15 A

45 ns

HiPerFRED²

High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number

DPG 15 I 400PM

30 DI 0

Backside: isolated

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package:

 $V_{RRM} =$

TO-220FPAC

- Industry standard outline
- Plastic overmolded tab for electrical isolation
- Epoxy meets UL 94V-0
- RoHS compliant

Ratings

Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		T _{VJ} = 25 °C			400	V
I _R	reverse current	V _R = 400 V	T _{VJ} = 25 °C			1	μΑ
		$V_R = 400 V$	T_{VJ} = 150 °C			0.1	mA
V _F	forward voltage	I _F = 15 A	T _{vJ} = 25 °C			1.40	V
		$I_F = 30 A$			0.00	1.60	V
		I _F = 15 A	T _{vJ} = 150 °C			1.08	V
		I _F = 30 A			0.00	1.29	V
I _{FAV}	average forward current	rectangular, d = 0.5	T _c = 130 °C			15	Α
V _{F0}	threshold voltage } for power loss	calculation only	$T_{VJ} = 175 ^{\circ}\text{C}$			0.75	V
r _F	slope resistance	alculation only				20.4	$m\Omega$
R _{thJC}	thermal resistance junction to case					4.20	K/W
T _{VJ}	virtual junction temperature			-55		175	°C
P _{tot}	total power dissipation		$T_{\rm C}$ = 25 °C			36	W
I _{FSM}	max. forward surge current	$t_p = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	$T_{VJ} = 45 ^{\circ}C$			130	Α
I _{RM}	max. reverse recovery current	I _F = 15 A;	$T_{VJ} = 25 ^{\circ}C$		4		Α
t _m	reverse recovery time	$-di_{F}/dt = 200 \text{ A/}\mu\text{s}$	T_{VJ} = 125 °C				Α
			T _{vJ} = 25 °C		45		ns
		$V_{R} = 100 V T_{V}$	T_{VJ} = 125 °C				ns
C _J	junction capacitance	V _R = 200 V; f = 1 MHz	T _{VJ} = 25 °C		tbd		pF
E _{AS}	non-repetitive avalanche energy	$I_{AS} = \text{tbd A}; L = 100 \mu\text{H}$	T _{VJ} = 25 °C			tbd	mJ
I _{AR}	repetitive avalanche current	$V_A = 1.5 \cdot V_R \text{ typ.; } f = 10 \text{ kHz}$				tbd	Α

0638

advanced

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin*			35	Α	
R _{thCH}	thermal resistance case to heatsink			0.50		K/W	
$M_{\scriptscriptstyle D}$	mounting torque		0.4		0.6	Nm	
F _c	mounting force with clip		20		60	N	
T _{stg}	storage temperature		-55		150	°C	
Weight				2		g	

^{*} Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.
In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-220FPAC

MY2	INCHES		MILLIMETERS		
2111	MIN	MAX	MIN	MAX	
Α	.177	.193	4.50	4.90	
A1	.092	.108	2.34	2.74	
A2	.101	.117	2.56	2.96	
Q	.028	.035	0.70	0.90	
b1	.050	.058	1.27	1.47	
ט	.018	.024	0.45	0,60	
	.617	.633	15.67	16.07	
d1	0	.043	0	1.10	
Ε	.392	.408	9.96	10.36	
е	.100 BSC		2.54 BSC		
I	.255	.271	6.48	6.88	
L	.499	523	12.68	13.28	
L1	.119	135	3.03	3,43	
ØΡ	.121	.129	3.08	3.28	
Q	.126	.134	3.20	3.40	

NOTE:

1. All metal surface are matte pure tin plated except trimmed area.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

DPG15I400PM